Reconstituted B cell receptor signaling reveals carbohydrate-dependent mode of activation
RF Villar, J Patel, GC Weaver, M Kanekiyo… - Scientific reports, 2016 - nature.com
Scientific reports, 2016•nature.com
Activation of immune cells (but not B cells) with lectins is widely known. We used the
structurally defined interaction between influenza hemagglutinin (HA) and its cell surface
receptor sialic acid (SA) to identify a B cell receptor (BCR) activation modality that
proceeded through non-cognate interactions with antigen. Using a new approach to
reconstitute antigen-receptor interactions in a human reporter B cell line, we found that
sequence-defined BCRs from the human germline repertoire could be triggered by both …
structurally defined interaction between influenza hemagglutinin (HA) and its cell surface
receptor sialic acid (SA) to identify a B cell receptor (BCR) activation modality that
proceeded through non-cognate interactions with antigen. Using a new approach to
reconstitute antigen-receptor interactions in a human reporter B cell line, we found that
sequence-defined BCRs from the human germline repertoire could be triggered by both …
Abstract
Activation of immune cells (but not B cells) with lectins is widely known. We used the structurally defined interaction between influenza hemagglutinin (HA) and its cell surface receptor sialic acid (SA) to identify a B cell receptor (BCR) activation modality that proceeded through non-cognate interactions with antigen. Using a new approach to reconstitute antigen-receptor interactions in a human reporter B cell line, we found that sequence-defined BCRs from the human germline repertoire could be triggered by both complementarity to influenza HA and a separate mode of signaling that relied on multivalent ligation of BCR sialyl-oligosaccharide. The latter suggested a new mechanism for priming naïve B cell responses and manifested as the induction of SA-dependent pan-activation by peripheral blood B cells. BCR crosslinking in the absence of complementarity is a superantigen effect induced by some microbial products to subvert production of antigen-specific immune responses. B cell superantigen activity through affinity for BCR carbohydrate is discussed.
nature.com