[HTML][HTML] Host cell depletion of tryptophan by IFNγ-induced Indoleamine 2,3-dioxygenase 1 (IDO1) inhibits lysosomal replication of Coxiella burnetii

S Ganesan, CR Roy - PLoS pathogens, 2019 - journals.plos.org
PLoS pathogens, 2019journals.plos.org
Most intracellular pathogens that reside in a vacuole prevent transit of their compartment to
lysosomal organelles. Effector mechanisms induced by the pro-inflammatory cytokine
Interferon-gamma (IFNγ) can promote the delivery of pathogen-occupied vacuoles to
lysosomes for proteolytic degradation and are therefore important for host defense against
intracellular pathogens. The bacterial pathogen Coxiella burnetii is unique in that, transport
to the lysosome is essential for replication. The bacterium modulates membrane traffic to …
Most intracellular pathogens that reside in a vacuole prevent transit of their compartment to lysosomal organelles. Effector mechanisms induced by the pro-inflammatory cytokine Interferon-gamma (IFNγ) can promote the delivery of pathogen-occupied vacuoles to lysosomes for proteolytic degradation and are therefore important for host defense against intracellular pathogens. The bacterial pathogen Coxiella burnetii is unique in that, transport to the lysosome is essential for replication. The bacterium modulates membrane traffic to create a specialized autophagolysosomal compartment called the Coxiella-containing vacuole (CCV). Importantly, IFNγ signaling inhibits intracellular replication of C. burnetii, raising the question of which IFNγ-activated mechanisms restrict replication of a lysosome-adapted pathogen. To address this question, siRNA was used to silence a panel of IFNγ-induced genes in HeLa cells to identify genes required for restriction of C. burnetii intracellular replication. This screen demonstrated that Indoleamine 2,3-dioxygenase 1 (IDO1) contributes to IFNγ-mediated restriction of C. burnetii. IDO1 is an enzyme that catabolizes cellular tryptophan to kynurenine metabolites thereby reducing tryptophan availability in cells. Cells deficient in IDO1 function were more permissive for C. burnetii replication when treated with IFNγ, and supplementing IFNγ-treated cells with tryptophan enhanced intracellular replication. Additionally, ectopic expression of IDO1 in host cells was sufficient to restrict replication of C. burnetii in the absence of IFNγ signaling. Using differentiated THP1 macrophage-like cells it was determined that IFNγ-activation resulted in IDO1 production, and that supplementation of IFNγ-activated THP1 cells with tryptophan enhanced C. burnetii replication. Thus, this study identifies IDO1 production as a key cell-autonomous defense mechanism that limits infection by C. burnetii, which suggests that peptides derived from hydrolysis of proteins in the CCV do not provide an adequate supply of tryptophan for bacterial replication.
PLOS