Relationship between parathyroid hormone secretion and cytosolic calcium concentration in dispersed bovine parathyroid cells.

DM Shoback, J Thatcher… - Proceedings of the …, 1984 - National Acad Sciences
DM Shoback, J Thatcher, R Leombruno, EM Brown
Proceedings of the National Academy of Sciences, 1984National Acad Sciences
The parathyroid cell is unusual among exocytotic systems in that low extracellular Ca2+
concentrations stimulate, while high Ca2+ concentrations inhibit, parathyroid hormone
(PTH) release, suggesting that this cell might have unique secretory mechanisms. In the
present studies, we used the Ca2+-sensitive fluorescent dye QUIN-2 to examine the
relationship between cytosolic Ca2+ concentration and PTH release in dispersed bovine
parathyroid cells. The secretagogue dopamine, which enhances PTH release 2-to 3-fold in …
The parathyroid cell is unusual among exocytotic systems in that low extracellular Ca2+ concentrations stimulate, while high Ca2+ concentrations inhibit, parathyroid hormone (PTH) release, suggesting that this cell might have unique secretory mechanisms. In the present studies, we used the Ca2+-sensitive fluorescent dye QUIN -2 to examine the relationship between cytosolic Ca2+ concentration and PTH release in dispersed bovine parathyroid cells. The secretagogue dopamine, which enhances PTH release 2- to 3-fold in association with 20- to 30-fold increases in cellular cAMP, had no effect on the cytosolic Ca2+ level (261 +/- 28 vs. 236 +/- 22 nM for control cells at 1 mM extracellular Ca2+; P greater than 0.05). Dibutyryl-cAMP, which produces a comparable stimulation of PTH release, likewise did not modify the level of cytosolic Ca2+. Removal of extracellular Ca2+ produced a further decrease of the cytosolic Ca2+ to 82 +/- 10 nM. However, PTH secretion persisted at a near maximal rate despite this decrease of extracellular and cytosolic Ca2+ and was 95 +/- 2.5% of the rate of hormonal release at 0.5 mM extracellular Ca2+. In contrast, addition of the divalent cation ionophore ionomycin to parathyroid cells at 1.0 mM extracellular Ca2+ inhibited PTH secretion in association with an increase in cytosolic Ca2+ from 230 +/- 13 nM to 570 +/- 50 nM. Moreover, the magnitude of the ionomycin-induced reduction in PTH secretion (64 +/- 4% relative to the secretory rate at 0.5 mM Ca2+) was equivalent to the inhibition of PTH release caused by 1.5 mM extracellular Ca2+ (64 +/- 6%), which increased the cytosolic Ca2+ to similar levels (450 +/- 48 nM). Thus, the parathyroid cell differs from secretory cells thought to operate by stimulus-secretion coupling in the following ways: changes in PTH release can occur without detectable alterations in the cytosolic Ca2+ concentration, maximal rates of PTH secretion occur at cytosolic Ca2+ concentrations that fail to support exocytosis in other cell types, and increases in the cytosolic Ca2+ concentration due to ionomycin inhibit rather than stimulate PTH release. Therefore, the control of PTH secretion by Ca2+ and other secretagogues may involve previously undefined mechanisms whereby hormonal release is relatively independent of the cytosolic Ca2+ at low levels of this parameter and is inversely related to cytosolic Ca2+ at higher levels of intracellular Ca2+.
National Acad Sciences