NFAT-induced histone acetylation relay switch promotes c-Myc-dependent growth in pancreatic cancer cells

A Köenig, T Linhart, K Schlengemann, K Reutlinger… - Gastroenterology, 2010 - Elsevier
A Köenig, T Linhart, K Schlengemann, K Reutlinger, J Wegele, G Adler, G Singh, L Hofmann…
Gastroenterology, 2010Elsevier
BACKGROUND & AIMS: Induction of immediate early transcription factors (ITF) represents
the first transcriptional program controlling mitogen-stimulated cell cycle progression in
cancer. Here, we examined the transcriptional mechanisms regulating the ITF protein c-Myc
and its role in pancreatic cancer growth in vitro and in vivo. METHODS: Expression of ITF
proteins was examined by reverse-transcription polymerase chain reaction and
immunoblotting, and its implications in cell cycle progression and growth was determined by …
BACKGROUND & AIMS
Induction of immediate early transcription factors (ITF) represents the first transcriptional program controlling mitogen-stimulated cell cycle progression in cancer. Here, we examined the transcriptional mechanisms regulating the ITF protein c-Myc and its role in pancreatic cancer growth in vitro and in vivo.
METHODS
Expression of ITF proteins was examined by reverse-transcription polymerase chain reaction and immunoblotting, and its implications in cell cycle progression and growth was determined by flow cytometry and [3H]-thymidine incorporation. Intracellular Ca2+ concentrations, calcineurin activity, and cellular nuclear factor of activated T cells (NFAT) distribution were analyzed. Transcription factor complex formations and promoter regulation were examined by immunoprecipitations, reporter gene assays, and chromatin immunoprecipitation. Using a combination of RNA interference knockdown technology and xenograft models, we analyzed the significance for pancreatic cancer tumor growth.
RESULTS
Serum promotes pancreatic cancer growth through induction of the proproliferative NFAT/c-Myc axis. Mechanistically, serum increases intracellular Ca2+ concentrations and activates the calcineurin/NFAT pathway to induce c-Myc transcription. NFAT binds to a serum responsive element within the proximal promoter, initiates p300-dependent histone acetylation, and creates a local chromatin structure permissive for the inducible recruitment of Ets-like gene (ELK)-1, a protein required for maximal activation of the c-Myc promoter. The functional significance of this novel pathway was emphasized by impaired c-Myc expression, G1 arrest, and reduced tumor growth upon NFAT depletion in vitro and in vivo.
CONCLUSIONS
Our study uncovers a novel mechanism regulating cell growth and identifies the NFAT/ELK complex as modulators of early stages of mitogen-stimulated proliferation in pancreatic cancer cells.
Elsevier