IL-37 attenuates lung fibrosis by inducing autophagy and regulating TGF-β1 production in mice

MS Kim, AR Baek, JH Lee, AS Jang, DJ Kim… - The Journal of …, 2019 - journals.aai.org
MS Kim, AR Baek, JH Lee, AS Jang, DJ Kim, SS Chin, SW Park
The Journal of Immunology, 2019journals.aai.org
Idiopathic pulmonary fibrosis (IPF) is a progressive and destructive lung disease with a poor
prognosis resulting in a high mortality rate. IL-37 is an anti-inflammatory cytokine that inhibits
innate and adaptive immunity by downregulating proinflammatory mediators and pathways.
However, the exact role of IL-37 in lung fibrosis is unclear. In this study, we found that the IL-
37 protein was expressed in alveolar epithelial cells (AECs) and alveolar macrophages in
healthy controls but significantly reduced in patients with IPF. IL-37 significantly inhibited …
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and destructive lung disease with a poor prognosis resulting in a high mortality rate. IL-37 is an anti-inflammatory cytokine that inhibits innate and adaptive immunity by downregulating proinflammatory mediators and pathways. However, the exact role of IL-37 in lung fibrosis is unclear. In this study, we found that the IL-37 protein was expressed in alveolar epithelial cells (AECs) and alveolar macrophages in healthy controls but significantly reduced in patients with IPF. IL-37 significantly inhibited oxidative stress–induced primary mouse AEC death in a dose-dependent manner, and knockdown of IL-37 significantly potentiated human lung cancer–derived AEC (A549 cells) death. IL-37 attenuated constitutive mRNA and protein expression of fibronectin and collagen I in primary human lung fibroblasts. IL-37 inhibited TGF-β1–induced lung fibroblast proliferation and downregulated the TGF-β1 signaling pathway. Moreover, IL-37 enhanced beclin-1–dependent autophagy and autophagy modulators in IPF fibroblasts. IL-37 significantly decreased inflammation and collagen deposition in bleomycin-exposed mouse lungs, which was reversed by treatment with the autophagy inhibitor 3-methyladenine. Our findings suggested that a decrease in IL-37 may be involved in the progression of IPF and that IL-37 inhibited TGF-β1 signaling and enhancement of autophagy in IPF fibroblasts. Given its antifibrotic activity, IL-37 could be a therapeutic target in fibrotic lung diseases, including IPF.
journals.aai.org