[HTML][HTML] Lung macrophages contribute to house dust mite driven airway remodeling via HIF-1α

AJ Byrne, CP Jones, K Gowers, SM Rankin, CM Lloyd - PLoS One, 2013 - journals.plos.org
PLoS One, 2013journals.plos.org
HIF-1α is a transcription factor that is activated during hypoxia and inflammation and is a key
regulator of angiogenesis in vivo. During the development of asthma, peribronchial
angiogenesis is induced in response to aeroallergens and is thought to be an important
feature of sustained chronic allergic inflammation. Recently, elevated HIF-1α levels have
been demonstrated in both the lung tissue and bronchoalveolar lavage of allergic patients,
respectively. Therefore, we investigated the role of HIF-1α on the development of …
HIF-1α is a transcription factor that is activated during hypoxia and inflammation and is a key regulator of angiogenesis in vivo. During the development of asthma, peribronchial angiogenesis is induced in response to aeroallergens and is thought to be an important feature of sustained chronic allergic inflammation. Recently, elevated HIF-1α levels have been demonstrated in both the lung tissue and bronchoalveolar lavage of allergic patients, respectively. Therefore, we investigated the role of HIF-1α on the development of angiogenesis and inflammation following acute and chronic allergen exposure. Our data shows that intranasal exposure to house dust mite (HDM) increases the expression of HIF-1α in the lung, whilst reducing the expression of the HIF-1α negative regulators, PHD1 and PHD3. Blockade of HIF-1α in vivo, significantly decreased allergic inflammation and eosinophilia induced by allergen, due to a reduction in the levels of IL-5 and Eotaxin-2. Importantly, HIF-1α blockade significantly decreased levels of VEGF-A and CXCL1 in the lungs, which in turn led to a profound decrease in the recruitment of endothelial progenitor cells and a reduction of peribronchial angiogenesis. Furthermore, HDM or IL-4 treatment of primary lung macrophages resulted in significant production of both VEGF-A and CXCL1; inhibition of HIF-1α activity abrogated the production of these factors via an up-regulation of PHD1 and PHD3. These findings suggest that novel strategies to reduce the expression and activation of HIF-1α in lung macrophages may be used to attenuate allergen-induced airway inflammation and angiogenesis through the modulation of VEGF-A and CXCL1 expression.
Clinical Relevance
This study provides new insights into the role of HIF-1α in the development of peribronchial angiogenesis and inflammation in a murine model of allergic airway disease. These findings indicate that strategies to reduce activation of macrophage derived HIF-1α may be used as a target to improve asthma pathology.
PLOS