Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL‐37

A Schmidtchen, IM Frick, E Andersson… - Molecular …, 2002 - Wiley Online Library
A Schmidtchen, IM Frick, E Andersson, H Tapper, L Björck
Molecular microbiology, 2002Wiley Online Library
Effectors of the innate immune system, the anti‐bacterial peptides, have pivotal roles in
preventing infection at epithelial surfaces. Here we show that proteinases of the significant
human pathogens Pseudomonas aeruginosa, Enterococcus faecalis, Proteus mirabilis and
Streptococcus pyogenes, degrade the antibacterial peptide LL‐37. Analysis by mass
spectrometry of fragments generated by P. aeruginosa elastase in vitro revealed that the
initial cleavages occurred at Asn‐Leu and Asp‐Phe, followed by two breaks at Arg‐Ile, thus …
Summary
Effectors of the innate immune system, the anti‐bacterial peptides, have pivotal roles in preventing infection at epithelial surfaces. Here we show that proteinases of the significant human pathogens Pseudomonas aeruginosa, Enterococcus faecalis, Proteus mirabilis and Streptococcus pyogenes, degrade the antibacterial peptide LL‐37. Analysis by mass spectrometry of fragments generated by P. aeruginosa elastase in vitro revealed that the initial cleavages occurred at Asn‐Leu and Asp‐Phe, followed by two breaks at Arg‐Ile, thus inactivating the peptide. Proteinases of the other pathogens also degraded LL‐37 as determined by SDS‐PAGE. Ex vivo, P. aeruginosa elastase induced LL‐37 degradation in human wound fluid, leading to enhanced bacterial survival. The degradation was blocked by the metalloproteinase inhibitors GM6001 and 1, 10‐phenantroline (both of which inhibited P. aeruginosa elastase, P. mirabilis proteinase, and E. faecalis gelatinase), or the inhibitor E64 (which inhibited S. pyogenes cysteine proteinase). Additional experiments demonstrated that dermatan sulphate and disaccharides of the structure [ΔUA(2S)‐GalNAc(4,6S)], or sucroseoctasulphate, in‐hibited the degradation of LL‐37. The results indicate that proteolytic degradation of LL‐37 is a common virulence mechanism and that molecules which block this degradation could have therapeutic potential.
Wiley Online Library