Regulation of vascular smooth muscle cell turnover by endothelial cell–secreted microRNA-126: role of shear stress

J Zhou, YS Li, P Nguyen, KC Wang, A Weiss… - Circulation …, 2013 - Am Heart Assoc
J Zhou, YS Li, P Nguyen, KC Wang, A Weiss, YC Kuo, JJ Chiu, JY Shyy, S Chien
Circulation research, 2013Am Heart Assoc
Rationale: Endothelial microRNA-126 (miR-126) modulates vascular development and
angiogenesis. However, its role in the regulation of smooth muscle cell (SMC) function is
unknown. Objective: To elucidate the role of miR-126 secreted by endothelial cells (ECs) in
regulating SMC turnover in vitro and in vivo, as well as the effects of shear stress on the
regulation. Methods and Results: Coculture of SMCs with ECs or treatment of SMCs with
conditioned media from static EC monoculture (EC-CM) increased SMC miR-126 level and …
Rationale:
Endothelial microRNA-126 (miR-126) modulates vascular development and angiogenesis. However, its role in the regulation of smooth muscle cell (SMC) function is unknown.
Objective:
To elucidate the role of miR-126 secreted by endothelial cells (ECs) in regulating SMC turnover in vitro and in vivo, as well as the effects of shear stress on the regulation.
Methods and Results:
Coculture of SMCs with ECs or treatment of SMCs with conditioned media from static EC monoculture (EC-CM) increased SMC miR-126 level and SMC turnover; these effects were abolished by inhibition of endothelial miR-126 and by the application of laminar shear stress to ECs. SMC miR-126 did not increase when treated with EC-CM from ECs subjected to inhibition of miR biogenesis, or with CM from sheared ECs. Depletion of extracellular/secreted vesicles in EC-CM did not affect the increase of SMC miR-126 by EC-CM. Biotinylated miR-126 or FLAG (DYKDDDDK epitope)-tagged Argonaute2 transfected into ECs was detected in the cocultured or EC-CM–treated SMCs, indicating a direct EC-to-SMC transmission of miR-126 and Argonaute2. Endothelial miR-126 represses forkhead box O3, B-cell lymphoma 2, and insulin receptor substrate 1 mRNAs in the cocultured SMCs, suggesting the functional roles of the transmitted miR-126. Systemic depletion of miR-126 in mice inhibited neointimal lesion formation of carotid arteries induced by cessation of blood flow. Administration of EC-CM or miR-126 mitigated the inhibitory effect.
Conclusions:
Endothelial miR-126 acts as a key intercellular mediator to increase SMC turnover, and its release is reduced by atheroprotective laminar shear stress.
Am Heart Assoc