[PDF][PDF] Chaperone-assisted selective autophagy is essential for muscle maintenance

V Arndt, N Dick, R Tawo, M Dreiseidler, D Wenzel… - Current Biology, 2010 - cell.com
V Arndt, N Dick, R Tawo, M Dreiseidler, D Wenzel, M Hesse, DO Fürst, P Saftig, R Saint
Current Biology, 2010cell.com
How are biological structures maintained in a cellular environment that constantly threatens
protein integrity? Here we elucidate proteostasis mechanisms affecting the Z disk, a protein
assembly essential for actin anchoring in striated muscles, which is subjected to mechanical,
thermal, and oxidative stress during contraction [1]. Based on the characterization of the
Drosophila melanogaster cochaperone Starvin (Stv), we define a conserved chaperone
machinery required for Z disk maintenance. Instead of keeping Z disk proteins in a folded …
Summary
How are biological structures maintained in a cellular environment that constantly threatens protein integrity? Here we elucidate proteostasis mechanisms affecting the Z disk, a protein assembly essential for actin anchoring in striated muscles, which is subjected to mechanical, thermal, and oxidative stress during contraction [1]. Based on the characterization of the Drosophila melanogaster cochaperone Starvin (Stv), we define a conserved chaperone machinery required for Z disk maintenance. Instead of keeping Z disk proteins in a folded conformation, this machinery facilitates the degradation of damaged components, such as filamin, through chaperone-assisted selective autophagy (CASA). Stv and its mammalian ortholog BAG-3 coordinate the activity of Hsc70 and the small heat shock protein HspB8 during disposal that is initiated by the chaperone-associated ubiquitin ligase CHIP and the autophagic ubiquitin adaptor p62. CASA is thus distinct from chaperone-mediated autophagy, previously shown to facilitate the ubiquitin-independent, direct translocation of a client across the lysosomal membrane [2]. Impaired CASA results in Z disk disintegration and progressive muscle weakness in flies, mice, and men. Our findings reveal the importance of chaperone-assisted degradation for the preservation of cellular structures and identify muscle as a tissue that highly relies on an intact proteostasis network, thereby shedding light on diverse myopathies and aging.
cell.com