[HTML][HTML] The Inactivation of Arx in Pancreatic α-Cells Triggers Their Neogenesis and Conversion into Functional β-Like Cells

M Courtney, E Gjernes, N Druelle, C Ravaud… - PLoS …, 2013 - journals.plos.org
M Courtney, E Gjernes, N Druelle, C Ravaud, A Vieira, N Ben-Othman, A Pfeifer, F Avolio…
PLoS genetics, 2013journals.plos.org
Recently, it was demonstrated that pancreatic new-born glucagon-producing cells can
regenerate and convert into insulin-producing β-like cells through the ectopic expression of
a single gene, Pax4. Here, combining conditional loss-of-function and lineage tracing
approaches, we show that the selective inhibition of the Arx gene in α-cells is sufficient to
promote the conversion of adult α-cells into β-like cells at any age. Interestingly, this
conversion induces the continuous mobilization of duct-lining precursor cells to adopt an …
Recently, it was demonstrated that pancreatic new-born glucagon-producing cells can regenerate and convert into insulin-producing β-like cells through the ectopic expression of a single gene, Pax4. Here, combining conditional loss-of-function and lineage tracing approaches, we show that the selective inhibition of the Arx gene in α-cells is sufficient to promote the conversion of adult α-cells into β-like cells at any age. Interestingly, this conversion induces the continuous mobilization of duct-lining precursor cells to adopt an endocrine cell fate, the glucagon+ cells thereby generated being subsequently converted into β-like cells upon Arx inhibition. Of interest, through the generation and analysis of Arx and Pax4 conditional double-mutants, we provide evidence that Pax4 is dispensable for these regeneration processes, indicating that Arx represents the main trigger of α-cell-mediated β-like cell neogenesis. Importantly, the loss of Arx in α-cells is sufficient to regenerate a functional β-cell mass and thereby reverse diabetes following toxin-induced β-cell depletion. Our data therefore suggest that strategies aiming at inhibiting the expression of Arx, or its molecular targets/co-factors, may pave new avenues for the treatment of diabetes.
PLOS