Testosterone is required for gonadotropin-releasing hormone stimulation of luteinizing hormone-beta messenger ribonucleic acid expression in female rats

M Yasin, AC Dalkin, DJ Haisenleder… - Endocrinology, 1996 - academic.oup.com
M Yasin, AC Dalkin, DJ Haisenleder, JC Marshall
Endocrinology, 1996academic.oup.com
Pulsatile GnRH stimulates the synthesis and secretion of LH and FSH in both male and
female rats. In the male rat, exogenous GnRH pulses increase alpha, LH and FSH beta
messenger RNAs (mRNAs) 3-fold within 24 h. In contrast, the results of recent in vivo and in
vitro studies have shown that GnRH stimulates an increase in alpha and FSH beta mRNAs,
but not LHbeta. However, during the estrous cycle, LHbeta mRNA increases during the
GnRH-induced LH surge on proestrus afternoon. This increase in LHbeta mRNA appears to …
Abstract
Pulsatile GnRH stimulates the synthesis and secretion of LH and FSH in both male and female rats. In the male rat, exogenous GnRH pulses increase alpha, LH and FSH beta messenger RNAs (mRNAs) 3-fold within 24 h. In contrast, the results of recent in vivo and in vitro studies have shown that GnRH stimulates an increase in alpha and FSH beta mRNAs, but not LHbeta. However, during the estrous cycle, LHbeta mRNA increases during the GnRH-induced LH surge on proestrus afternoon. This increase in LHbeta mRNA appears to be coincident with a transient rise in serum testosterone (T). Therefore, the present study was conducted to determine whether T has a role in facilitating GnRH stimulation of LHbeta mRNA expression. In the first group of studies, adult female rats were ovariectomized, and T implants were inserted sc 7 days before the study (serum T, 1.86 ng/ml). Animals received iv pulses of GnRH (25 ng; 30-min interval) for 6-24 h (saline pulses to controls). The data showed that in the presence of T, GnRH stimulated a significant increase in LHbeta (as well as alpha and FSH beta) mRNAs within 6 h (P < 0.05 vs. saline-pulsed controls). Other results revealed that T treatment was critical to the stimulatory effect of GnRH on LH beta mRNA. A second group of studies examined the time course and dose effects of T on LH beta mRNA expression. Maximal LH beta mRNA responses to GnRH (3-fold increase vs. saline controls; P < 0.05) were seen after pretreatment with the lowest dose of T examined (serum T, 0.42 ng/ml), which is similar to T concentrations on proestrus. Higher doses of T suppressed LH release, as well as LH mRNA responses to GnRH. The T-induced LHbeta mRNA response to pulsatile GnRH was seen within 24 h of exposure to T and was the result of an androgenic action, as similar results were observed in rats that received dihydrotestosterone. These findings suggest that T is required to facilitate GnRH stimulation of LHbeta mRNA in the female rat. Moreover, in the presence of the concentrations of T seen on proestrus, LHbeta mRNA increases within 6 h, which is similar to the time course seen during the LH surge. Thus, the present results also suggest that the combined effects of the rise in serum T and increased GnRH secretion induce the rapid rise in LHbeta mRNA expression on the afternoon of proestrus.
Oxford University Press