Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo

KM Lohr, AI Bernstein, KA Stout… - Proceedings of the …, 2014 - National Acad Sciences
KM Lohr, AI Bernstein, KA Stout, AR Dunn, CR Lazo, SP Alter, M Wang, Y Li, X Fan, EJ Hess…
Proceedings of the National Academy of Sciences, 2014National Acad Sciences
Disruption of neurotransmitter vesicle dynamics (transport, capacity, release) has been
implicated in a variety of neurodegenerative and neuropsychiatric conditions. Here, we
report a novel mouse model of enhanced vesicular function via bacterial artificial
chromosome (BAC)-mediated overexpression of the vesicular monoamine transporter 2
(VMAT2; Slc18a2). A twofold increase in vesicular transport enhances the vesicular capacity
for dopamine (56%), dopamine vesicle volume (33%), and basal tissue dopamine levels …
Disruption of neurotransmitter vesicle dynamics (transport, capacity, release) has been implicated in a variety of neurodegenerative and neuropsychiatric conditions. Here, we report a novel mouse model of enhanced vesicular function via bacterial artificial chromosome (BAC)-mediated overexpression of the vesicular monoamine transporter 2 (VMAT2; Slc18a2). A twofold increase in vesicular transport enhances the vesicular capacity for dopamine (56%), dopamine vesicle volume (33%), and basal tissue dopamine levels (21%) in the mouse striatum. The elevated vesicular capacity leads to an increase in stimulated dopamine release (84%) and extracellular dopamine levels (44%). VMAT2-overexpressing mice show improved outcomes on anxiety and depressive-like behaviors and increased basal locomotor activity (41%). Finally, these mice exhibit significant protection from neurotoxic insult by the dopaminergic toxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), as measured by reduced dopamine terminal damage and substantia nigra pars compacta cell loss. The increased release of dopamine and neuroprotection from MPTP toxicity in the VMAT2-overexpressing mice suggest that interventions aimed at enhancing vesicular capacity may be of therapeutic benefit in Parkinson disease.
National Acad Sciences