Mutation-linked, excessively tight interaction between the calmodulin binding domain and the C-terminal domain of the cardiac ryanodine receptor as a novel cause of …

S Nishimura, T Yamamoto, Y Nakamura, M Kohno… - Heart Rhythm, 2018 - Elsevier
S Nishimura, T Yamamoto, Y Nakamura, M Kohno, Y Hamada, Y Sufu, G Fukui, T Nanno…
Heart Rhythm, 2018Elsevier
Background Ryanodine receptor (RyR2) is known to be a causal gene of catecholaminergic
polymorphic ventricular tachycardia (CPVT), an important inherited disease. Some of the
human CPVT-associated mutations have been found in a domain (4026-4172) that has EF
hand motifs, the so-called calmodulin (CaM)-like domain (CaMLD). Objective The purpose
of this study was to investigate the underlying mechanism by which CPVT is induced by a
mutation at CaMLD. Methods A new N4103K/+ knock-in (KI) mice model was generated …
Background
Ryanodine receptor (RyR2) is known to be a causal gene of catecholaminergic polymorphic ventricular tachycardia (CPVT), an important inherited disease. Some of the human CPVT-associated mutations have been found in a domain (4026-4172) that has EF hand motifs, the so-called calmodulin (CaM)-like domain (CaMLD).
Objective
The purpose of this study was to investigate the underlying mechanism by which CPVT is induced by a mutation at CaMLD.
Methods
A new N4103K/+ knock-in (KI) mice model was generated.
Results
Sustained ventricular tachycardia was frequently observed after infusion of caffeine plus epinephrine in KI mice. Endogenous CaM bound to RyR2 decreased even at baseline in isolated KI cardiomyocytes. Ca2+ spark frequency (CaSpF) was much higher in KI cells than in wild-type cells. Addition of GSH-CaM (higher affinity CaM to RyR2) significantly decreased CaSpF. In response to isoproterenol, spontaneous Ca2+ transient (SCaT) was frequently observed in intact KI cells. Incorporation of GSH-CaM into intact KI cells using a protein delivery kit decreased SCaT significantly. An assay using a quartz crystal microbalance technique revealed that mutated CaMLD peptide showed higher binding affinity to CaM binding domain (CaMBD) peptide.
Conclusion
In the N4103K mutant, CaM binding affinity to RyR2 was significantly reduced regardless of beta-adrenergic stimulation. We found that this was caused by an abnormally tight interaction between CaMBD and mutated CaM-like domain (N4103K-CaMBD). Thus, CaMBD–CaMLD interaction may be a novel therapeutic target for treatment of lethal arrhythmia.
Elsevier