AXL mediates resistance to cetuximab therapy

TM Brand, M Iida, AP Stein, KL Corrigan… - Cancer research, 2014 - AACR
TM Brand, M Iida, AP Stein, KL Corrigan, CM Braverman, N Luthar, M Toulany, PS Gill…
Cancer research, 2014AACR
The EGFR antibody cetuximab is used to treat numerous cancers, but intrinsic and acquired
resistance to this agent is a common clinical outcome. In this study, we show that
overexpression of the oncogenic receptor tyrosine kinase AXL is sufficient to mediate
acquired resistance to cetuximab in models of non–small cell lung cancer (NSCLC) and
head and neck squamous cell carcinoma (HNSCC), where AXL was overexpressed,
activated, and tightly associated with EGFR expression in cells resistant to cetuximab (CtxR …
Abstract
The EGFR antibody cetuximab is used to treat numerous cancers, but intrinsic and acquired resistance to this agent is a common clinical outcome. In this study, we show that overexpression of the oncogenic receptor tyrosine kinase AXL is sufficient to mediate acquired resistance to cetuximab in models of non–small cell lung cancer (NSCLC) and head and neck squamous cell carcinoma (HNSCC), where AXL was overexpressed, activated, and tightly associated with EGFR expression in cells resistant to cetuximab (CtxR cells). Using RNAi methods and novel AXL-targeting agents, we found that AXL activation stimulated cell proliferation, EGFR activation, and MAPK signaling in CtxR cells. Notably, EGFR directly regulated the expression of AXL mRNA through MAPK signaling and the transcription factor c-Jun in CtxR cells, creating a positive feedback loop that maintained EGFR activation by AXL. Cetuximab-sensitive parental cells were rendered resistant to cetuximab by stable overexpression of AXL or stimulation with EGFR ligands, the latter of which increased AXL activity and association with the EGFR. In tumor xenograft models, the development of resistance following prolonged treatment with cetuximab was associated with AXL hyperactivation and EGFR association. Furthermore, in an examination of patient-derived xenografts established from surgically resected HNSCCs, AXL was overexpressed and activated in tumors that displayed intrinsic resistance to cetuximab. Collectively, our results identify AXL as a key mediator of cetuximab resistance, providing a rationale for clinical evaluation of AXL-targeting drugs to treat cetuximab-resistant cancers. Cancer Res; 74(18); 5152–64. ©2014 AACR.
AACR