[HTML][HTML] Heme oxygenase-1, oxidation, inflammation, and atherosclerosis

JA Araujo, M Zhang, F Yin - Frontiers in pharmacology, 2012 - frontiersin.org
JA Araujo, M Zhang, F Yin
Frontiers in pharmacology, 2012frontiersin.org
Atherosclerosis is an inflammatory process of the vascular wall characterized by the
infiltration of lipids and inflammatory cells. Oxidative modifications of infiltrating low-density
lipoproteins and induction of oxidative stress play a major role in lipid retention in the
vascular wall, uptake by macrophages and generation of foam cells, a hallmark of this
disorder. The vasculature has a plethora of protective resources against oxidation and
inflammation, many of them regulated by the Nrf2 transcription factor. Heme oxygenase-1 …
Atherosclerosis is an inflammatory process of the vascular wall characterized by the infiltration of lipids and inflammatory cells. Oxidative modifications of infiltrating low-density lipoproteins and induction of oxidative stress play a major role in lipid retention in the vascular wall, uptake by macrophages and generation of foam cells, a hallmark of this disorder. The vasculature has a plethora of protective resources against oxidation and inflammation, many of them regulated by the Nrf2 transcription factor. Heme oxygenase-1 (HO-1) is a Nrf2-regulated gene that plays a critical role in the prevention of vascular inflammation. It is the inducible isoform of HO, responsible for the oxidative cleavage of heme groups leading to the generation of biliverdin, carbon monoxide, and release of ferrous iron. HO-1 has important antioxidant, antiinflammatory, antiapoptotic, antiproliferative, and immunomodulatory effects in vascular cells, most of which play a significant role in the protection against atherogenesis. HO-1 may also be an important feature in macrophage differentiation and polarization to certain subtypes. The biological effects of HO-1 are largely attributable to its enzymatic activity, which can be conceived as a system with three arms of action, corresponding to its three enzymatic byproducts. HO-1 mediated vascular protection may be due to a combination of systemic and vascular local effects. It is usually expressed at low levels but can be highly upregulated in the presence of several proatherogenic stimuli. The HO-1 system is amenable for use in the development of new therapies, some of them currently under experimental and clinical trials. Interestingly, in contrast to the HO-1 antiatherogenic actions, the expression of its transcriptional regulator Nrf2 leads to proatherogenic effects instead. This suggests that a potential intervention on HO-1 or its byproducts may need to take into account any potential alteration in the status of Nrf2 activation. This article reviews the available evidence that supports the antiatherogenic role of HO-1 as well as the potential pathways and mechanisms mediating vascular protection.
Frontiers