Telomerase activation in atherosclerosis and induction of telomerase reverse transcriptase expression by inflammatory stimuli in macrophages

F Gizard, EB Heywood, HM Findeisen… - … , and vascular biology, 2011 - Am Heart Assoc
F Gizard, EB Heywood, HM Findeisen, Y Zhao, KL Jones, C Cudejko, GR Post, B Staels
Arteriosclerosis, thrombosis, and vascular biology, 2011Am Heart Assoc
Objective—Telomerase serves as a critical regulator of tissue renewal. Although telomerase
activity is inducible in response to various environmental cues, it remains unknown whether
telomerase is activated during the inflammatory remodeling underlying atherosclerosis
formation. To address this question, we investigated in the present study the regulation of
telomerase in macrophages and during atherosclerosis development in low-density
lipoprotein receptor–deficient mice. Methods and Results—We demonstrate that …
Objective
Telomerase serves as a critical regulator of tissue renewal. Although telomerase activity is inducible in response to various environmental cues, it remains unknown whether telomerase is activated during the inflammatory remodeling underlying atherosclerosis formation. To address this question, we investigated in the present study the regulation of telomerase in macrophages and during atherosclerosis development in low-density lipoprotein receptor–deficient mice.
Methods and Results
We demonstrate that inflammatory stimuli activate telomerase in macrophages by inducing the expression of the catalytic subunit telomerase reverse transcriptase (TERT). Reporter and chromatin immunoprecipitation assays identified a previously unrecognized nuclear factor-κB (NF-κB) response element in the TERT promoter, to which NF-κB is recruited during inflammation. Inhibition of NF-κB signaling completely abolished the induction of TERT expression, characterizing TERT as a bona fide NF-κB target gene. Furthermore, functional experiments revealed that TERT deficiency results in a senescent cell phenotype. Finally, we demonstrate high levels of TERT expression in macrophages of human atherosclerotic lesions and establish that telomerase is activated during atherosclerosis development in low-density lipoprotein receptor–deficient mice.
Conclusion
These results characterize TERT as a previously unrecognized NF-κB target gene in macrophages and demonstrate that telomerase is activated during atherosclerosis. This induction of TERT expression prevents macrophage senescence and may have important implications for the development of atherosclerosis.
Am Heart Assoc