Endothelial Nogo-B regulates sphingolipid biosynthesis to promote pathological cardiac hypertrophy during chronic pressure overload

Y Zhang, Y Huang, A Cantalupo, PS Azevedo… - JCI …, 2016 - pmc.ncbi.nlm.nih.gov
Y Zhang, Y Huang, A Cantalupo, PS Azevedo, M Siragusa, J Bielawski, FJ Giordano…
JCI insight, 2016pmc.ncbi.nlm.nih.gov
We recently discovered that endothelial Nogo-B, a membrane protein of the ER, regulates
vascular function by inhibiting the rate-limiting enzyme, serine palmitoyltransferase (SPT), in
de novo sphingolipid biosynthesis. Here, we show that endothelium-derived sphingolipids,
particularly sphingosine-1-phosphate (S1P), protect the heart from inflammation, fibrosis,
and dysfunction following pressure overload and that Nogo-B regulates this paracrine
process. SPT activity is upregulated in banded hearts in vivo as well as in TNF-α–activated …
We recently discovered that endothelial Nogo-B, a membrane protein of the ER, regulates vascular function by inhibiting the rate-limiting enzyme, serine palmitoyltransferase (SPT), in de novo sphingolipid biosynthesis. Here, we show that endothelium-derived sphingolipids, particularly sphingosine-1-phosphate (S1P), protect the heart from inflammation, fibrosis, and dysfunction following pressure overload and that Nogo-B regulates this paracrine process. SPT activity is upregulated in banded hearts in vivo as well as in TNF-α–activated endothelium in vitro, and loss of Nogo removes the brake on SPT, increasing local S1P production. Hence, mice lacking Nogo-B, systemically or specifically in the endothelium, are resistant to the onset of pathological cardiac hypertrophy. Furthermore, pharmacological inhibition of SPT with myriocin restores permeability, inflammation, and heart dysfunction in Nogo-A/B–deficient mice to WT levels, whereas SEW2871, an S1P1 receptor agonist, prevents myocardial permeability, inflammation, and dysfunction in WT banded mice. Our study identifies a critical role of endothelial sphingolipid biosynthesis and its regulation by Nogo-B in the development of pathological cardiac hypertrophy and proposes a potential therapeutic target for the attenuation or reversal of this clinical condition.
pmc.ncbi.nlm.nih.gov