Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force

O Traub, BC Berk - Arteriosclerosis, thrombosis, and vascular …, 1998 - Am Heart Assoc
O Traub, BC Berk
Arteriosclerosis, thrombosis, and vascular biology, 1998Am Heart Assoc
Mechanical forces are important modulators of cellular function in many tissues and are
particularly important in the cardiovascular system. The endothelium, by virtue of its unique
location in the vessel wall, responds rapidly and sensitively to the mechanical conditions
created by blood flow and the cardiac cycle. In this study, we examine data which suggest
that steady laminar shear stress stimulates cellular responses that are essential for
endothelial cell function and are atheroprotective. We explore the ability of shear stress to …
Abstract
—Mechanical forces are important modulators of cellular function in many tissues and are particularly important in the cardiovascular system. The endothelium, by virtue of its unique location in the vessel wall, responds rapidly and sensitively to the mechanical conditions created by blood flow and the cardiac cycle. In this study, we examine data which suggest that steady laminar shear stress stimulates cellular responses that are essential for endothelial cell function and are atheroprotective. We explore the ability of shear stress to modulate atherogenesis via its effects on endothelial-mediated alterations in coagulation, leukocyte and monocyte migration, smooth muscle growth, lipoprotein uptake and metabolism, and endothelial cell survival. We also propose a model of signal transduction for the endothelial cell response to shear stress including possible mechanotransducers (integrins, caveolae, ion channels, and G proteins), intermediate signaling molecules (c-Src, ras, Raf, protein kinase C) and the mitogen activated protein kinases (ERK1/2, JNK, p38, BMK-1), and effector molecules (nitric oxide). The endothelial cell response to shear stress may also provide a mechanism by which risk factors such as hypertension, diabetes, hypercholesterolemia, and sedentary lifestyle act to promote atherosclerosis.
Am Heart Assoc