A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM

Y Sun, X Jiang, S Chen… - Proceedings of the …, 2005 - National Acad Sciences
Y Sun, X Jiang, S Chen, N Fernandes, BD Price
Proceedings of the National Academy of Sciences, 2005National Acad Sciences
The ataxia telangiectasia mutant (ATM) protein kinase regulates the cell's response to DNA
damage through the phosphorylation of proteins involved in cell-cycle checkpoints and DNA
repair. However, the signal-transduction pathway linking DNA strand breaks to activation of
ATM's kinase activity is not clearly defined. Here, we demonstrate that DNA damage induces
the rapid acetylation of ATM. This acetylation depends on the Tip60 histone
acetyltransferase (HAT). Suppression of Tip60 blocks the activation of ATM's kinase activity …
The ataxia telangiectasia mutant (ATM) protein kinase regulates the cell's response to DNA damage through the phosphorylation of proteins involved in cell-cycle checkpoints and DNA repair. However, the signal-transduction pathway linking DNA strand breaks to activation of ATM's kinase activity is not clearly defined. Here, we demonstrate that DNA damage induces the rapid acetylation of ATM. This acetylation depends on the Tip60 histone acetyltransferase (HAT). Suppression of Tip60 blocks the activation of ATM's kinase activity and prevents the ATM-dependent phosphorylation of p53 and chk2. Further, inactivation of Tip60 sensitizes cells to ionizing radiation. ATM forms a stable complex with Tip60 through the conserved FATC domain of ATM. The interaction between ATM and Tip60 is not regulated in response to DNA damage. Instead, the HAT activity of the ATM–Tip60 complex is specifically activated by DNA damage. Furthermore, this activation of Tip60 by DNA damage and the recruitment of the ATM–Tip60 complex to sites of DNA damage is independent of ATM's kinase activity. The results demonstrate that the Tip60 HAT plays a key role in the activation of ATM's kinase activity in response to DNA damage.
National Acad Sciences