Neutrophil migration across a cultured intestinal epithelium. Dependence on a CD11b/CD18-mediated event and enhanced efficiency in physiological direction.

CA Parkos, C Delp, MA Arnaout… - The Journal of clinical …, 1991 - Am Soc Clin Investig
The Journal of clinical investigation, 1991Am Soc Clin Investig
Neutrophils (PMN) migrate across intestinal epithelia in many disease states. Although such
migration serves as a histological index of disease activity, little is known concerning the
molecular events underlying PMN-intestinal epithelial interactions. We have studied
chemotactic peptide-driven movement of PMN across cultured monolayers of the human
intestinal epithelial cell line T84. Using a transmigration microassay, we show that both the
decreased transepithelial resistance (76+/-3%) and transmigration (4+/-0.6 x 10 (5) PMN. cm …
Neutrophils (PMN) migrate across intestinal epithelia in many disease states. Although such migration serves as a histological index of disease activity, little is known concerning the molecular events underlying PMN-intestinal epithelial interactions. We have studied chemotactic peptide-driven movement of PMN across cultured monolayers of the human intestinal epithelial cell line T84. Using a transmigration microassay, we show that both the decreased transepithelial resistance (76 +/- 3%) and transmigration (4 +/- 0.6 x 10(5) PMN.cm-2, when PMN applied at 6 x 10(6).cm-2) are largely prevented by MAbs which recognize either subunit of the PMN surface heterodimeric adhesion glycoprotein, CD11b/CD18. In contrast, such PMN-epithelial interactions are unaffected by MAbs recognizing either of the remaining two alpha subunits CD11a or CD11c. PMN from a leukocyte adherence deficiency patient also failed to migrate across epithelial monolayers thus confirming a requirement for CD11/18 integrins. By modifying our microassay, we were able to assess PMN transmigration across T84 monolayers in the physiological direction (which, for technical reasons, has not been studied in epithelia): transmigration was again largely attenuated by MAb to CD18 or CD11b (86 +/- 2% and 73 +/- 3% inhibition, respectively) but was unaffected by MAb to CD11a, CD11c. For standard conditions of PMN density, PMN transmigration in the physiological direction was 5-20 times more efficient than in the routinely studied opposite direction.
Images
The Journal of Clinical Investigation