Supplemental Data

Monocyte Notch2 expression predicts interferon-beta immunogenicity in multiple sclerosis patients

Marsilio Adriani¹, Petra Nytrova², Cyprien Mbogning³, Signe Hässler³, Karel Medek², Poul Erik H Jensen⁴, Paul Creeke⁵, Clemens Warnke^{6,7}, Kathleen Wolffram⁶, Bernhard Hemmer⁸, Claudia Sievers⁹, Raija L.P. Lindberg Gasser⁹, Nicolas Fissolo¹⁰, Florian Diesenhammer¹¹, Zsolt Bocskei¹², Vincent Mikol¹², Anna Fogdell-Hahn¹³, Eva Havrdova², Philippe Broët^{3,14}, Pierre Dönnes¹⁵, Claudia Mauri^{1*}, and Elizabeth C Jury^{1*}

Affiliations:

¹Department of Rheumatology, University College Hospital, UK.

²Department of Neurology and Center for Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.

³CESP, Fac. De Médecine-Univ. Paris-Sud, Fac. De Médecine-UVSQ, INSERM, Université Paris-Saclay, 94805, Villejuif, France

⁴ Neuroimmunology Laboratory, DMSC, Department of Neurology, Rigshospitalet, Region H, Copenhagen, Denmark

⁵Neuroimmunology Unit, Centre for Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK.

⁶Department of Neurology, Medical Faculty, Research Group for Clinical and Experimental Neuroimmunology, Heinrich-Heine-University, Düsseldorf, Germany.

⁷University Hospital Koeln, Dept. of Neurology, Koeln, Germany

⁸Klinikum rechts der Isar, Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany;

⁹Laboratory of Clinical Neuroimmunology, Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland

¹⁰Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Barcelona, Spain

¹¹Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria.

¹²Translational Sciences Unit, Sanofi R&D, 91385 Chilly-Mazarin, Paris, France

¹³Karolinska Institutet, Department of Clinical Neuroscience, Center for Molecular Medicine (CMM), Karolinska University Hospital, Sweden.

¹⁴Assistance Publique - Hôpitaux de Paris, Hôpital Paul Brousse, Villejuif, France

¹⁵Scicross AB, Skövde, Sweden

Supplemental Acknowledgments for ABIRISK Consortium

List of ABIRISK partners, leaders and task responsible persons:

INSERM (Marc Pallardy, Sophie Tourdot, Xavier Mariette, Sebastien Lacroix-Desmazes, Philippe Broet, Delphine Bachelet, Nadia El-Hamdi); GlaxoSmithKline (Dan Sikkema, Amy Loercher, Julie Davidson, Andy Lawton, Steve Etheridge, Sally Miles); Medizinische Universität Innsbruck (Florian Deisenhammer); UCB Pharma SA (Louis Christodoulou, Hishani Kirby); Academisch Medisch Centrul bij de Universiteit van Amsterdam (Niek De Vries, Anne Musters); Assistance Publique Hopitaux de Paris (Aline Doublet, Mohcine Benbijja); Groupe d'études thérapeutiques des affections inflammatoires du tube digestif (Matthieu Allez, Sabrina Williams); Universitaetsklinikum Bonn (Johannes Oldenburg, Thilo Albert); Heinrich-Heine-University, Düsseldorf (Hans-Peter Hartung, Clemens Warnke, Kathleen Wolffram, Bernd Kieseier); Karolinska Institutet (Anna Fogdell Hahn, Malin Ryner, Ryan Ramanujam); Pfizer (Tim Hickling, Bonnie Rupp); Merck Serono (Elisa Bertotti); Ipsen (Julie Le Grand); University College London (Claudia Mauri, Elizabeth Jury, Jessica Manson, David Isenberg); Sanofi-Aventis Research and Development (Vincent Mikol, Agnès Hincelin-Mery, Catherine Prades, Pauline Loas); Università di Firenze (Enrico Maggi); Novartis Pharma AG (Annette Karle, Sebastian Spindeldreher, Verena Romach-Riegraf); Fondazione per l'Istituto di Ricerca in Biomedicina (Antonio Lanzavecchia); Klinikum rechts der Isar der Technischen Universitaet Muenchen (Bernhard Hemmer); Commissariat à l'Energie Atomique (Bernard Maillere); Novo Nordisk (Christian Ross Pedersen); Scicross AB (Pierre Dönnes); Bayer Schering Pharma AG (Jeannette Lo, Pascale Buchmann); eTRIKS (Fabien Richard); Paul-Ehrlich-Institut (Christine Keipert); ALTA Ricerca e Sviluppo in Biotecnologie S.r.l.u. (Riccardo Bertini, Simona Farnetani); Charles University in Prague (Eva havrdova, Petra Nytrova); Queen Mary University of London (Gavin Giovannoni).

Supplemental Tables

CD4 ⁺ T cells		Mono	ocytes	B cells	
beta2 microglobuli n	CD41	beta2 microglobuli n	CD45	beta2 microglobuli n	CD49c
BTLA	CD43	C3AR	CD45RA	BTLA	CD49d
C3AR	CD44	C5L2	CD45RB	CCR10	CD49e
CCR10	CD45	CCR10	CD45RO	CD10	CD49f
CD100	CD45RA	CD10	CD46	CD100	CD5
CD101 (BB27)	CD45RB	CD100	CD47	CD102	CD50
CD102	CD45RO	CD101 (BB27)	CD48	CD105	CD51
CD107a	CD46	CD102	CD49a	CD107a	CD51-61
CD119 (IFNgR a chain)	CD47	CD103	CD49d	CD108	CD52
CD11a	CD48	CD105	CD49e	CD112 (Nectin-2)	CD53
CD11b	CD49a	CD107a	CD49f	CD116	CD54
CD126 (IL- 6Ra)	CD49c	CD109	CD50	CD119 (IFNgR a chain)	CD55
CD127 (IL- 7Ra)	CD49d	CD112 (Nectin-2)	CD51	CD11a	CD58
CD132	CD49e	CD114	CD51-61	CD11b	CD59
CD134	CD49f	CD115	CD52	CD11c	CD6
CD143	CD5	CD116	CD53	CD123	CD61
CD148	CD50	CD119 (IFNgR a chain)	CD54	CD124	CD62E
CD150 (SLAM)	CD51	CD11a	CD55	CD126 (IL- 6Ra)	CD62L
CD154	CD52	CD11b	CD56	CD129 (IL- 9R)	CD62P
CD156c (ADAM10)	CD53	CD11b (activated)	CD57	CD131	CD63
CD16	CD54	CD11c	CD58	CD132	CD66a-c-e
CD161	CD55	CD123	CD59	CD137L (4- 1BBL)	CD69
CD162	CD57	CD126 (IL- 6Ra)	CD6	CD144	CD7
CD164	CD58	CD129 (IL-	CD61	CD146	CD70

Supplemental Table 1: Markers retained for analysis in the different subsets

		9R)			
CD165	CD50	,	CD62E	CD149	CD71
CD165	CD59	CD13	CD62E	CD148	CD71
CD166	CD6	CD131	CD62L	CD150 (SLAM)	CD73
CD172g	CD61	CD132	CD62P	CD156c (ADAM10)	CD74
CD18	CD62L	CD137L (4- 1BBL)	CD63	CD158e	CD79b
CD183	CD63	CD138	CD64	CD16	CD80
CD184	CD69	CD140b	CD66a-c-e	CD162	CD81
CD195	CD7	CD141	CD69	CD164	CD82
CD196	CD71	CD144	CD7	CD165	CD83
CD197	CD73	CD146	CD71	CD166	CD84
CD2	CD81	CD148	CD73	CD167a	CD85j
CD200	CD82	CD15	CD74	CD170	CD86
CD200R	CD84	CD155 (PVR)	CD79b	CD172a	CD87
CD205	CD85a	CD156c (ADAM10)	CD80	CD172b	CD89
CD21	CD88	CD158d	CD81	CD18	CD8a
CD210	CD8a	CD16	CD82	CD180	CD9
CD218a	CD9	CD162	CD83	CD183	CD95
CD229	CD95	CD163	CD84	CD184	CD96
CD231	CD96	CD164	CD85a	CD193	CD97
CD235ab	CD97	CD165	CD85d	CD195	CD99
CD243	CD99	CD166	CD85h	CD196	CX3CR1
CD244	CLEC12A	CD167a	CD85j	CD197	CXCR7
CD245	CX3CR1	CD169	CD85k	CD1c	DLL4
CD25	HLA-A,B,C	CD170	CD86	CD1d	DR3
CD257	HLA-A2	CD172a	CD87	CD2	FcRL6
CD26	HLA-E	CD172b	CD88	CD20	HLA-A,B,C
CD27	Integrin beta7	CD179a	CD89	CD200	HLA-A2
CD270	MSC (W4A5)	CD18	CD8a	CD200R	HLA-E
CD274	Notch 2	CD180	CD9	CD202b	Ig light chain k
CD277	TCR a-b	CD181	CD93	CD205	Ig light chain lambda
CD278	TCR V beta8	CD182	CD94	CD21	IgD
CD279	TCR V beta9	CD183	CD95	CD210	IgM
CD28		CD184	CD96	CD213a2	Integrin beta7
CD29		CD195	CD97	CD218a	MSC (W4A5)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	CD298	[CD196	CD99	CD22	Notch 1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						111-2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CD39					
Image: chain of the second						
$\begin{tabular}{ c c c c c } \hline chain k & chain lambda & chain la$				chain		
chain lambdaCD252IgMCD270CD254Integrin alpha9 beta1CD274CD257Integrin beta7CD275CD258LAPCD277CD261CD28CD262Mac-2 (galectin-3)CD270MSC (W4A5)CD271CD298CD272Notch 1CD273CD274CD274Notch 1CD275CD274CD270CD270CD271CD298CD272CD281CD262Mac-2 (galectin-3)CD263CD290CD270MSC (W4A5)CD271NPC (57D2)CD272CD31CD284Siglec-10CD284SSEA-1CD284SSEA-1CD284SSEA-1CD284CD290CD284CD290CD284SSEA-1CD284CD317CD284CD294CD284CD317CD284CD294CD285Tim-3CD284CD319CD285Tim-3CD284CD319CD285Tim-3CD296Tim-3CD296Tim-3CD296Tim-3CD314			CD244		CD268	
$\begin{tabular}{ c c c c c c } \hline CD254 & Integrin \\ alpha9 beta1 \\ \hline CD257 & Integrin \\ beta7 \\ \hline CD258 & LAP & CD277 \\ \hline CD261 & & CD28 \\ \hline CD262 & Mac-2 \\ (galectin-3) \\ \hline CD262 & Mac-2 \\ (galectin-3) \\ \hline CD268 & MAIR-II & CD29 \\ \hline CD270 & MSC \\ CD270 & MSC \\ CD270 & MSC \\ CD270 & (W4A5) \\ \hline CD275 & Notch 1 & CD298 \\ \hline CD275 & Notch 2 & CD3 \\ \hline CD277 & NPC (57D2) & CD301 \\ \hline CD28 & Siglec-10 & CD307 \\ \hline CD28 & Siglec-9 & CD31 \\ \hline CD284 & SSEA-1 & CD317 \\ \hline CD286 & Tim-3 & CD319 \\ \hline CD298 & TRA-1-60-R & CD344 \\ \hline CD298 & TRA-1-60-R & CD344 \\ \hline \end{tabular}$			CD245		CD27	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			CD252	IgM	CD270	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			CD254	-	CD274	
CD261CD261CD28Lymphotoxin b receptor (LT-bR)CD28CD262Mac-2 (galectin-3)CD284CD268MAIR-IICD29CD270MSC (W4A5)CD290CD274Notch 1CD298CD275Notch 2CD3CD277NPC (57D2)CD301CD284Siglec-10CD307CD284SSEA-1CD317CD284SSEA-1CD317CD286Tim-3CD319CD290TLT-2CD32CD291TRA-1-60-RCD344			CD257	-	CD275	
Lymphotoxin b receptor (LT-bR)Lymphotoxin b receptor (LT-bR)CD262Mac-2 (galectin-3)CD284CD268MAIR-IICD29CD270MSC (W4A5)CD290CD274Notch 1CD298CD275Notch 2CD3CD277NPC (57D2)CD301CD288Siglec-10CD307CD284SSEA-1CD317CD286Tim-3CD319CD298TRA-1-60-RCD344			CD258	LAP	CD277	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			CD261	b receptor	CD28	
CD270 MSC (W4A5) CD290 CD274 Notch 1 CD298 CD275 Notch 2 CD3 CD277 NPC (57D2) CD301 CD28 Siglec-10 CD307 CD282 Siglec-9 CD31 CD284 SSEA-1 CD317 CD286 Tim-3 CD319 CD298 TRA-1-60-R CD344			CD262		CD284	
(W4A5) (W4A5) CD274 Notch 1 CD298 CD275 Notch 2 CD3 CD277 NPC (57D2) CD301 CD28 Siglec-10 CD307 CD282 Siglec-9 CD31 CD284 SSEA-1 CD317 CD286 Tim-3 CD319 CD29 TLT-2 CD32 CD298 TRA-1-60-R CD344			CD268	MAIR-II	CD29	
CD274 Notch 1 CD298 CD275 Notch 2 CD3 CD277 NPC (57D2) CD301 CD28 Siglec-10 CD307 CD282 Siglec-9 CD31 CD284 SSEA-1 CD317 CD286 Tim-3 CD319 CD29 TLT-2 CD32 CD298 TRA-1-60-R CD344			CD270		CD290	
CD275 Notch 2 CD3 CD277 NPC (57D2) CD301 CD28 Siglec-10 CD307 CD282 Siglec-9 CD31 CD284 SSEA-1 CD317 CD286 Tim-3 CD319 CD29 TLT-2 CD32 CD298 TRA-1-60-R CD344			CD274		CD298	
CD277 NPC (57D2) CD301 CD28 Siglec-10 CD307 CD282 Siglec-9 CD31 CD284 SSEA-1 CD317 CD286 Tim-3 CD319 CD29 TLT-2 CD32 CD298 TRA-1-60-R CD344						
CD28 Siglec-10 CD307 CD282 Siglec-9 CD31 CD284 SSEA-1 CD317 CD286 Tim-3 CD319 CD29 TLT-2 CD32 CD298 TRA-1-60-R CD344						
CD282 Siglec-9 CD31 CD284 SSEA-1 CD317 CD286 Tim-3 CD319 CD29 TLT-2 CD32 CD298 TRA-1-60-R CD344						
CD284 SSEA-1 CD317 CD286 Tim-3 CD319 CD29 TLT-2 CD32 CD298 TRA-1-60-R CD344				-		
CD286 Tim-3 CD319 CD29 TLT-2 CD32 CD298 TRA-1-60-R CD344				-		
CD29 TLT-2 CD32 CD298 TRA-1-60-R CD344						
CD298 TRA-1-60-R CD344						
			CD3		CD35	
CD30 CD352						
CD300e CD36						

CD300f	CD360	
CD301	CD39	
CD31	CD40	
CD317	CD41	
CD319	CD42b	
CD32	CD43	
CD324	CD44	
CD325	CD45	
CD328	CD45RA	
CD33	CD45RB	
CD338	CD46	
CD34	CD47	
CD344	CD48	
CD35		
CD352		
CD354		
CD355		
CD357		
CD36		
CD360		
CD39		
CD40		
CD41		
CD42b		
CD43		
CD44		

Supplemental Table 1: Legendscreen optimisation. Immune cell surface markers used to identify differentially expressed markers (DEMs) in multiple sclerosis (MS) patients with and without anti-drug antibodies to IFN- β . Peripheral blood mononuclear cells (PBMCs) from healthy controls (HCs) (n=10), and patients with MS (treated for 12 months, MS-T, n=28 and treatment naïve, MS-N, n=15) were analysed using the LegendScreen platform. The expression of the 332 cell surface markers in all groups were compared as described in Supplemental Figure 1. All cell surface markers that were negative in all HCs and MS patients (treated or not treated with IFN β) were excluded from future analysis. This Table lists all the markers on monocytes, B-cells and T-cells that were included in future analysis.

Supplemental Table 2:

Cell subset	Markers	P value
	CD34	0.0357533
	FcRL6	0.0182166
	Notch 2	0.000387312
	CD138	0.0400212
	CD319	0.00225787
	CD200R	0.0327181
CD14 ⁺ Monosytos	CD284	0.0297907
CD14 ⁺ Monocytes (% positive)	CD274	0.00389132
(70 positive)	CD129 (IL-9R)	0.0233099
	CD16	0.0287405
	CD169	0.0110785
	CD123	0.012337
	CD71	0.00318563
	Tim-3	0.0262036
	CD245	0.0166616
	CD262	6.162782e-005
	HLA.E	0.00171913
	Notch2	0.00216778
CD14 ⁺ Manageter	CD317	0.00238299
CD14 ⁺ Monocytes (MFI)	CX3CR1	0.00746864
(1411-1)	CD81	0.00824417
	CD82	0.0102909
	CD254	0.0105262
	CLEC9A	0.0108831
	CD165	0.00324693
CD19 ⁺ B-cells	CD183	0.00345526
(MFI)	MSC_NPC	0.00450016

Supplemental Table 2: List of differentially expressed markers (DEMs) identified between neutralizing anti-drug antibody (nADA)⁻ and nADA⁺ multiple sclerosis (MS)

patients: Peripheral blood mononuclear cells (PBMCs) from the discovery cohort (Table 1) of MS patients treated with IFN- β for at least 12 months who had (nADA⁺, n=16) or had not (nADA⁻, n=12) developed neutralizing anti-drug antibodies (nADA) were analysed by Legendscreen and the results compared using unpaired t-tests and a false discovery rate (FDR) <0.2 (see Figure 2A). The majority of DEMs were on monocytes (n=21), with 3 B-cell markers and no CD4⁺T-cell markers identified. MFI; mean fluorescence intensity.

Cell subset	Markers	T1 les	sions	T2 le	sions
		r	р	r	р
	CD34	0.1204	0.6236	-0.3788	0.1098
	FcRL6	-0.06549	0.7900	-0.1789	0.4638
	Notch 2	-0.3940	0.0951	-0.4011	0.0888
	CD138	-0.2105	0.3870	-0.6825	0.0013
	CD319	-0.1649	0.4999	-0.1088	0.6576
	CD200R	0.04035	0.8697	0.1737	0.4770
CD14 ⁺	CD284	-0.1649	0.4999	-0.3263	0.1727
CD14 ⁺	CD274	-0.1333	0.5863	-0.2193	0.3670
Monocytes (% positive)	CD129 (IL-9R)	-0.2912	0.2264	-0.06491	0.7918
	(IL-9K) CD16	0.04447	0.50.60	0.005010	0.0772
		0.06667	0.7863	0.007018	0.9773
	CD169	0.01492	0.9517	0.2756	0.2535
	CD123	0.1847	0.4631	-0.05470	0.8293
	CD71	-0.2807	0.2444	-0.1035	0.6733
	Tim-3	-0.1455	0.5645	-0.5191	0.0273
	CD245	0.04912	0.8417	-0.2982	0.2149
	CD262	0.4228	0.0713	0.1579	0.5185
	HLA.E	0.1421	0.5617	-0.00702	0.9773
	Notch2	-0.3509	0.1408	-0.1807	0.4591
CD14 ⁺	CD317	0.06667	0.7863	-0.09649	0.6943
Monocytes	CX3CR1	0.2333	0.3364	-0.06316	0.7973
(MFI)	CD81	0.2667	0.2698	0.07018	0.7753
	CD82	0.3860	0.1027	-0.2404	0.3216
	CD254	0.4368	0.0615	0.5140	0.0244
	CLEC9A	0.2386	0.3253	0.5684	0.0111
CD19 ⁺	CD165	0.1912	0.4329	0.1737	0.4770
B-cells	CD183	0.2035	0.4034	0.0	> 0.9999
(MFI)	MSC_NPC	0.5474	0.0153	-0.02807	0.9092

Supplemental Table 3: DEMs correlation with change in brain lesion size in the previous 12 months assessed by QMRI T1 and T2 scanning

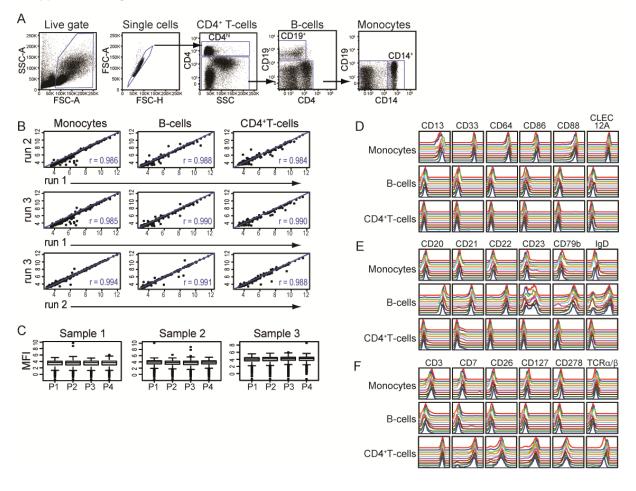
Supplemental Table 3: Differentially expressed markers (DEMs) correlation with disease activity. DEMs identified in Figure 2A and Supplemental Table 2 were correlated with changes in brain lesion inflammation detected by QMRI T1 and T2 scanning. Brain lesions at the time of peripheral blood mononuclear cell (PBMC) isolation were compared to MRI scans performed 12 months previously. Markers found to be associated with disease activity are highlighted in bold and the correlation shown in Figure 2A.

Supplemental Table 4: Differentially expressed markers (DEMs) associated with neutralizing anti-drug antibodies (nADA)-Discovery cohort

Cell subsets	Markers	P value
	Notch 2	0.000387312
CD14 ⁺ Monocytes	CD200R	0.0327181
(% positive)	CD284	0.0297907
	CD169	0.0110785
	CD245	0.0166616
CD14 ⁺ Monocytes	CD262	6.162782e-005
(MFI)	Notch2	0.00216778
	CD317	0.00238299

Supplemental Table 4: Differentially expressed markers (DEMs) associated with neutralizing anti-drug antibodies (nADA)- Discovery cohort. Seven markers expressed on monocytes were associated exclusively with the development of nADA in multiple sclerosis (MS) patients treated for at least 12 month with IFN- β after excluding those markers whose expression was influenced by disease progression and IFN- β drug itself (see also figure 2B-F and fig, S2A-C). Analysed by unpaired T-tests and a false discovery rate (FDR) <0.2.

model					
CD4+ Th cells		Mono	ocytes CD19+ BCells		BCells
Positive	Negative	Positive	Negative	Positive	Negative
TCR a/b	CD19	CD11a	TCR Vb13.	CD20	TCR g/d
CD3	CD22	CD11b	TCR Vb13.2	CD21	TCR Vb13.
CD2	CD23	CD11c	TCR Vb13.2	CD22	TCR Vb13.2
CD28	CD13	CD13	TCR Vb13.2	BTLA	TCR Vb13.2
CD5	CD14	CD15	TCR Vb23	CD11a	TCR Vb13.2
CD6	CD14	CD18	TCR Vb8	CD18	TCR Vb23
CD7	CD15	CD31	TCR Vb9	CD48	TCR Vb8
CD27	CD33	CD32	TCR Vg9	CD32	TCR Vb9
CD44	CD66b	CD33	TCR Va24-	CD40	TCR Vg9
			Ja18		
CD45	CD138	CD35	TCR Va7.2	CD180	TCR Va24-
					Ja18
CD45RO		CD36	CD90	CD27	TCR Va7.2
CD45RA		CLEC12a	CD22	CD23	CD90
CD127		CD298		CD24	


Supplemental Table 5: "Gold Standard" markers used for the generation of mixture model

Cohort	nADA ⁺	ADA	Cohort	nADA ⁺	ADA
	Patients	Titre	Conort	Patients	Titre
	Pt1	320		Pt1	20480
	Pt2	10240		Pt2	160
	Pt3	640		Pt3	640
	Pt3	80		Pt4	5120
	Pt4	20480		Pt5	1280
	Pt5	1280		Pt6	2560
	Pt6	20480	Validation	Pt7	640
	Pt7	320		Pt8	1280
Discovery	Pt8	160		Pt9	1280
	Pt9	160		Pt10	10240
	Pt10	160		Pt11	40
	Pt11	160		Pt12	1280
	Pt12	80		Pt13	1280
	Pt13	1280			
	Pt14	320			
	Pt15	640			
	Pt16	320			

Supplemental Table 6: Discovery and validation patients nADA titres

Supplemental Table 6: Neutralizing anti-drug antibody (nADA) titres of discovery and validation cohort nADA⁺ patients. Serum samples collected 12 mouths after the first IFN- β administration were tested for nADA using a luciferase-based bioassay (LUC) (1). nADA titres were determined in all positive samples. Immuno-depletion was performed for all samples screened positive to assess assay specificity.

Supplemental Figure 1

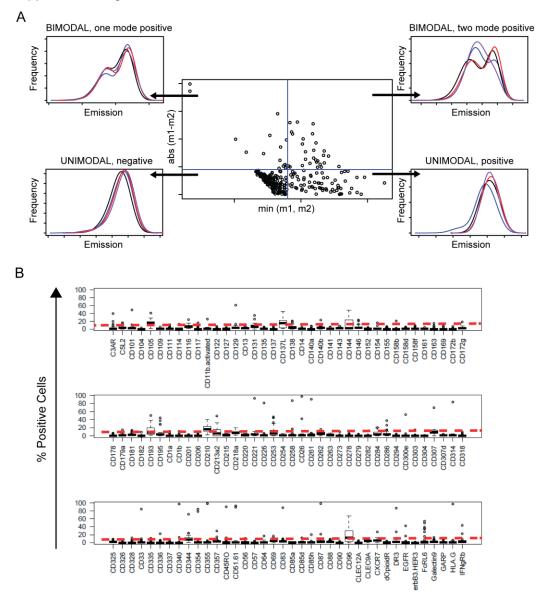
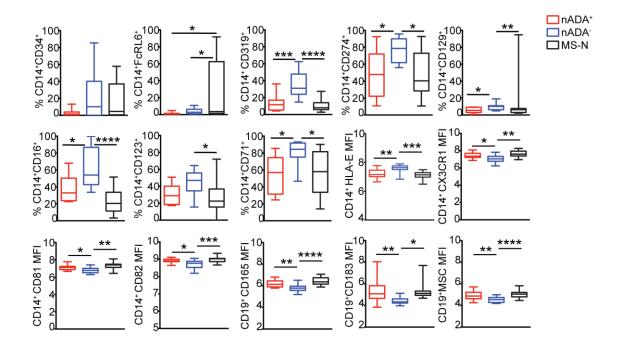


Figure 1: Validation of high-throughput flow cytometry methodology to detect immune signatures in healthy donor lymphocytes and monocytes.

(A) PBMC gating strategy identifying CD4⁺ T-cells, B-cells and monocytes analysed by the LegendScreen[™] platform (see Figure 1A).


Analysis of inter and intra-assay stability: (**B**) 10×10^7 PBMCs from one healthy donor (HC) were isolated and frozen in liquid nitrogen. 30×10^6 PBMCs were thawed on three separate days and analysed using LegendScreen. Expression levels of the 332 markers were assessed on each cell population on Day 1, Day 2 and Day 3 (runs 1-3) and the results were correlated using Spearman's correlation coefficients (r). (**C**) Intra-assay stability was measured by assessing mean fluorescence emissions from each of the 4 plates of the platform (P1-P4). Box plots, Mean ±SD, One-way ANOVA. (**D-F**) The specificity of the antibodies used for monocytes (D), CD19⁺ B-cells (E) and CD4⁺ T-cells (F) were validated using a panel of markers widely reported to be specific for each cell population.

Supplemental Figure 2

Supplemental Figure 2: Statistical analysis strategy to improve the power of the cell surface marker analyses.

(A) Since many markers were negative in all samples tested (Figure 1C) to increase the statistical power of the analysis a mixture model with two components was fitted on to each of the 332 markers analyzed followed by 4 class clustering for each cell subpopulation. (B) Markers that clustered with known negative gold standard markers and were expressed by less than 5% of each cell subsets in at least 90% of the samples (Total sample number=55) were removed from the analysis. Refer to materials and Methods and supplemental table 5 for a comprehensive explanation.

Supplemental Figure 3. Differentially expressed markers (DEMs) associated with responses to IFN-β were excluded from further analysis.

Markers excluded from further analysis because their expression was affected by IFN- β . Expression of DEMs identified in Figure 2A and Supplemental Table 2 were compared in nADA⁺ (n=11), nADA⁻ (n=9) and MS naïve (MS-N; n=15) patients using the scheme shown in Figure 2E. DEMs found to be associated with IFN- β activity were excluded from further analysis (CD34, CDFcRL6, CD319, CD274, CD129, CD16, CD123, CD71 HLA-E on monocytes and CD165, CD183 and MSC on B-cells). ANOVA with Turkey's multiple comparison test. The box plot shows the median and 25th and 75th percentiles, and the whiskers represent minimum and maximum values.*P<0.05, **P<0.01, ***P<0.001.

A

100

80

60

40

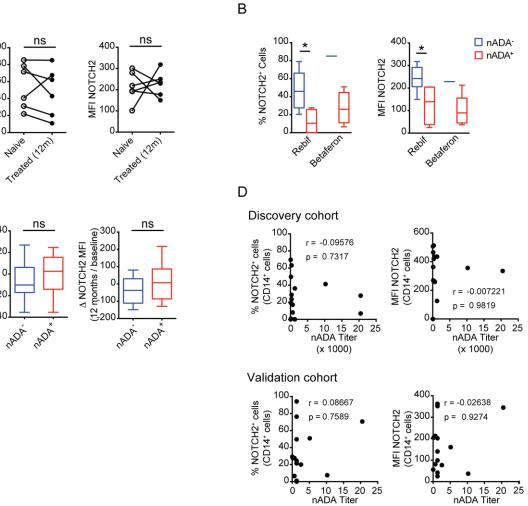
20

0

40

20

C

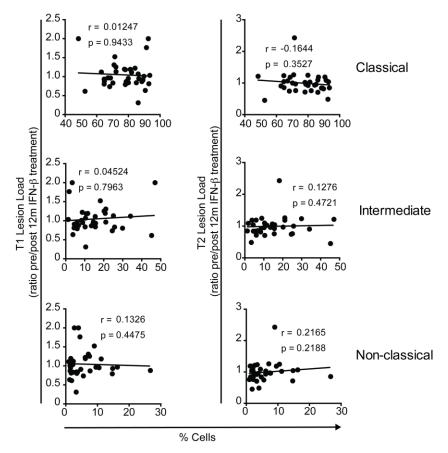

20

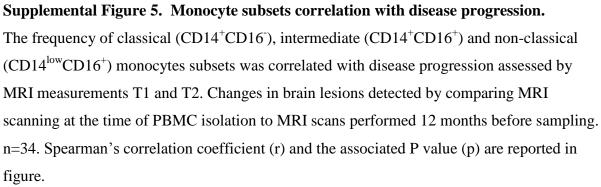
nADÁ

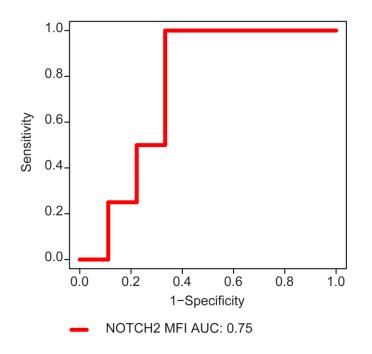
12 months / baseline) ∆ % NOTCH2⁺ Cells

% NOTCH2⁺ Cells

С

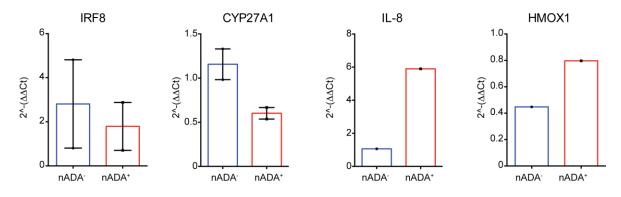

Supplemental Figure 4. Effect of IFN-β treatment, drug preparations and ADA titre on **NOTCH2** expression.


(x 1000)


(x 1000)

A) NOTCH2 monocyte membrane expression was evaluated in 6 MS patients before (open circles) and after IFN- β treatment (full circles). Paired T test; ns = not significant. (B) To evaluate the effect of different IFN-β preparations on NOTCH2 expression, patients were stratified accordingly the type of IFN- β taken (mammalian derived Rebif: nADA⁺n=5, nADA⁻ n=8; E.coli derived Betaferon: nADA⁺n=8, nADA⁻ n=1). One patient (nADA⁻) was treated with Avonex (mammalian derived) in our cohorts and could not be included in the figure. The same trend for NOTCH2 expression was observed in the 2 groups analysed. The box plot shows the median and 25th and 75th percentiles, and the whiskers represent minimum and maximum values. Mann Whitney test *P<0.05. (C) The presence of nADA did not induce changes in NOTCH2 expression. There was no difference between nADA⁺ and nADA⁻ patients in the delta NOTCH2 percentage positive monocytes (p=0.5282) nor in the delta NOTCH2 MFI (p=0.315). The box plot shows the median and 25th and 75th

percentiles, and the whiskers represent minimum and maximum values. Mann Whitney test. (**D**) The titre of nADA in all analysed patients was correlated with the expression of NOTCH2. Spearman's correlation coefficient (r) and P value (p) are reported in figure.



Supplemental Figure 6. ROC Analysis of MS baseline samples screened with LegendScreen

We repeated the ROC curve analyses using the patients of the prospective cohort whose baseline samples had been run on a miniplate of selected markers to build the predictor (a logistic regression model) and applying the predictor on another subset of patients from the prospective cohort whose baseline samples had been run with the complete Legendscreen panel of 332 markers (patients description in Table 1 Discovery cohort). We obtained a good discriminatory ability of nADA status (AUC=0.75) with the predictor using NOTCH2 MFI, in spite of different fluorescence levels of the subsets of patients due to the different technologies used

Supplemental Figure 7. Markers associated with non-classical monocyte differentiation after culture with nADA⁺ or nADA⁻ patient serum.

Healthy donor PBMCs were cultured with nADA⁻ or nADA⁺ patient serum. CD14⁺ monocytes were isolated and the expression of markers previously reported to be differently expressed in monocyte subsets was assessed. IRF8 and CYP27A1 were previously reported to be most highly expressed in classical monocytes (2, 3); IL8 and HMOX1 are highly expressed in non-classical monocytes (2, 4).

References

1. Hermanrud C et al. Development and validation of cell-based luciferase reporter gene assays for measuring neutralizing anti-drug antibodies against interferon beta. *J. Immunol. Methods* 2016;430:1–9

2. Gren ST et al. A Single-Cell Gene-Expression Profile Reveals Inter-Cellular Heterogeneity within Human Monocyte Subsets. *PLoS One* 2015;10(12):e0144351.

3. Wong KL et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. *Blood* 2011;118(5):e16–e31.

4. Thaler B et al. Differential in vivo activation of monocyte subsets during low-grade inflammation through experimental endotoxemia in humans. *Sci. Rep.* 2016;6(1):30162.