1	SUPPLEMENTAL DATA
2	
3	Defining the Role of M1 macrophage in Bone Repair
4	via the Function of 1,25-Dihydroxyvitamin D in M1/M2 Differentiation
5	Samiksha Wasnik ¹ , Charles H Rundle ² , David J Baylink ¹ , Mohammad Safaie Yazdi ¹ , Edmundo
6	E Carreon ¹ , Yi Xu ¹ , Xuezhong Qin ^{1,2} , Kin-Hing William Lau ^{1,2} , Xiaolei Tang ^{1*} .
7	
8	¹ Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma
9	Linda, CA.92354, USA
10	² Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA
11	92357, USA
12	
13	
14	Running title: 1,25(OH) ₂ D Blocks M1 Macrophage-MSC Crosstalk
15	
16	*Correspondence should be addressed to:
17	Xiaolei Tang, MD/PhD,
18	Department of Medicine,
19	Division of Regenerative Medicine,
20	Loma Linda University,
21	Loma Linda, CA. 92354.
22	Phone: (909) 651-5891;
23	Fax: (909) 558-0428.
24	Email: <u>Xitang@llu.edu</u> .
25	
26 27 28	The authors have declared that no conflict of interest exists
29 30 31 32 33	

Table S1. List of primers used in this study

Gene	Forward	Reverse
F4/80	CTTTGG CTATGGGCTTCCAGTC	GCAAGGAGGACAGAGTTTATCGTG
IL-1α	AGGGAGTCAACTCATTGGCG	ACTTCTGCCTGACGAGCTTC
IL-1β	GTCGCTCAGGGTCACAAGAA	GTGCTGCCTAATGTCCCCTT
IL-6	CTGCAAGAGACTTCCATCCAG	AGTGGTATAGACAGGTCTGTTGG
CD11b	CCATGACCTTCCAAGAGAATGC	ACCGGCTTGTGCTGTAGTC
TNF-α	GAACTCCAGGCGGTGCCTAT	TCGGCTGGCACCACTAGTTG
OSM	ATGCAGACACGGCTTCTAAGA	TTGGAGCAGCCACGATTGG
CD90	TGCTCTCAGTCTTGCAGGTG	TGGATGGAGTTATCCTTGGTGTT
CD105	TGCACTTGGCCTACGACTC	TGGAGGTAAGGGATGGTAGCA
CD73	AACCCCTTTCCTCTCAAATCCA	CAGGGCGATGATCTTATTCACAT
OCN	CTGACCTCACAGATCCCAAGC	TGGTCTGATAGCTCGTCACAAG
OSX	GGAAAGGAGGCACAAAGAAGC	CCCCTTAGGCACTAGGAGC
Runx2	TTCAACGATCTGAGATTTGTGGG	GGATGAGGAATGCGCCCTA
GAPDH	TGGCAAAGTGGAGATTGTTGCC	AAGATGGTGATGGGCTTCCCG

Notes: F4/80: adhesion G protein-coupled receptor E1, IL-1α: Interleukin-1α; IL-1β: Interleukin-

1β;, CD11b: Cluster of differentiation 11b, IL-6: Interleukin-6;, TNF-α :Tumor Necrosis Factor -

38 α ,OSM: Oncostatin M, CD90: Thy1, CD105: Endoglin, CD73: 5'-Nucleotidase,

39 OCN:Osteocalcin, OSX-:Osterix, Runx2-:Runt related transcription factor 2, GAPDH:

40 Glyceraldehyde-3-phosphate dehydrogenase.

- _ .

Table S2. Mean fluorescence intensities (MFIs) of secreted proteins in CD11b⁺F4/80⁺ macrophages at fracture sites

Day 4				
	Intact bones	Fractured bones		8
Proteins\MFIs\Tx		VC	100ng/kg VD	1000ng/kg VD
IL-1β	269.6±10.33****	994.3±51.26	712.3±6.6***	649.5±3.6***
IL-12	333.5±47.5***	540±25.5	500.3±44 ^{ns}	450.3±38 ^{ns}
IL-6	485.3±44.2****	815.4±5.9	479.2±37.8****	436.2±37.8****
TNF-α	435±6.6****	875.6±32.2	868±14.7 ^{ns}	805.5±12.6 ^{ns}
OSM-M	666±30.7***	1162±74.3	946±35.8 ^{ns}	667.3±67.2***

Day 7				
Proteins\MFIs\Tx	Intact bones	Fractured bones		
r roteins/ivir is/ i x		VC	100ng/kg VD	1000ng/kg VD
IL-1β	1227±42.0 ^{ns}	1381±72.8	1661±31.8 ^{ns}	1585±97.2 ^{ns}
IL-12	1123±25.3***	1648.5±1.2	1798±1.6*	1579.5±20.0 ^{ns}
IL-6	1641±143.1 ^{ns}	1893±39.5	1791±25.5 ^{ns}	1769±72.1 ^{ns}
ΤΝΓ-α	2268±177.6 ^{ns}	2349.6±57.5	2160±19.6 ^{ns}	2101±107.3 ^{ns}
OSM-M	1531.5±92.5 ^{ns}	1557±199.0	1489.667±9.7 ^{ns}	1725.5±60.5 ^{ns}

Note: "VD": 1,25(OH)₂D. "VC": vehicle. "Tx": treatment. $*P \le 0.05$, $**P \le 0.01$, $***P \le 0.001$,

59 **** $P \le 0.0001$, "ns": not significant. ANOVA test: vehicle vs intact bones, 100ng/kg VD, and 60 1000ng/kg VD.

- -

Table S3. Percent of MSC cell populations at days 4 and 7 post fracture surgery

Day 4				
	Intact bones	Fractured bones		nes
MSC\%\Tx		VC	100ng/kg VD	1000ng/kg VD
CD90	3.705±0.2***	8.1±0.03	4.2±0.4 **	3.9±0.3**
CD105	7.4±2.0*	14.9±0.5	9.8±0.7 ^{ns}	6.9±1.95*
CD29	9.6±2.5*	20.28±1.3	16.6±2.3 ^{ns}	15.3±3.7 ^{ns}
CD73	6.42±1.7**	14.9±0.6	11.8±1.2 ^{ns}	8.1±0.1*

Day 7				
	Intact bones	Fractured bones		
MSC\%\Tx		VC	100ng/kg VD	1000ng/kg VD
CD90	7.2±0.2 ^{ns}	10.5±0.9	16.9±0.7**	19±2.7**
CD105	2±0.5 ^{ns}	3.17±0.8	7.09±0.9*	6.5±0.9 ^{ns}
CD29	11.5±0.5 ^{ns}	11.47±0.8	21.6±2.5**	22.3±0.35**
CD73	9.0±1.3 ^{ns}	7.8±0.5	17.02±1.8*	16.0±3.7*

Note: "VD": 1,25(OH)₂D. "VC": vehicle. "Tx": treatment. $*P \le 0.05$, $**P \le 0.01$, $***P \le 0.001$,

**** $P \le 0.0001$, "ns": not significant. ANOVA test: vehicle vs intact bones, 100ng/kg VD,

76 1000ng/kg VD.

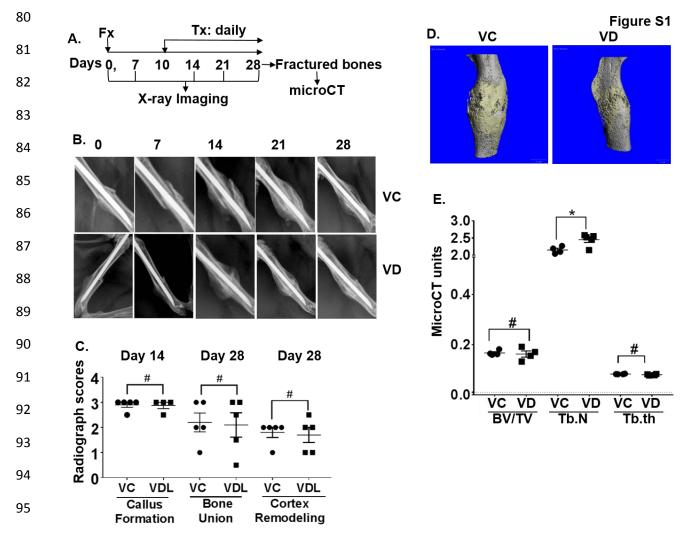


Figure S1. Local subcutaneous treatment with 1,25(OH)₂D during the regenerative stage 96 did not impair fracture repair. A) C57BL/6 mice were subject to fracture surgery (Fx). Ten 97 days later, the animals subcutaneously received at the fracture sites a daily dose of either vehicle 98 (VC) or 100ng/kg/mouse 1,25(OH)₂D (VD). X-ray images of the fractured bones were taken at 99 days 0, 7, 14, 21, and 28. At day 28, fractured bones were analyzed by microCT. B) 100 Representative x-ray images of fracture sites are shown. C) X-ray images were scored at day 14 101 for callus formation and at day 28 for bone union and cortex remodeling. [#]P>0.05. t-test. N=5. *D*) 102 Representative microCT 3D images are shown. E) Cumulative data show BV/TV (bone 103 volume/total volume), Tb.N (trabecular number), and Tb.th (trabecular thickness) from the 104 microCT analysis. *P<0.05; [#]P>0.05. t-test. N=5. 105

- 106
- 107
- 108
- 109
- 110

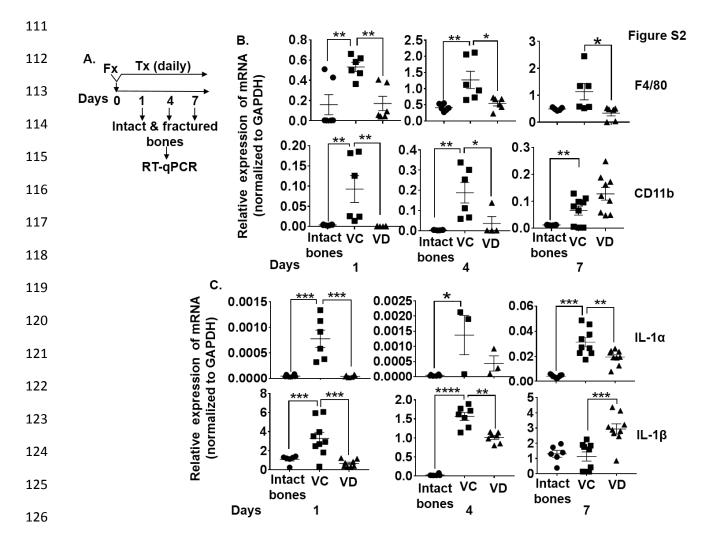


Figure S2. Local subcutaneous treatment with 1,25(OH)₂D during the pro-inflammatory stage decreased the expression of marker genes for M1 macrophages at fracture sites. A) C57BL/6 mice were subject to fracture surgery (Fx). Immediately after the fracture surgery, the animals subcutaneously received at the fracture sites a daily treatment (Tx) with vehicle (VC) or 100ng/kg/mouse 1,25(OH)₂D (VD). At days 1, 4, and 7, contralateral bones (Intact bones) and the bones at fracture sites (fractured bones) were examined by RT-qPCR analysis. **B**) Data show mRNA expressions of the marker genes for pan-macrophage (i.e. F4/80 and CD11b). C) Data show mRNA expressions of the marker genes for M1 macrophages (IL-1 α and IL-1 β). Data are means \pm SE. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001. ANOVA test. N=3.

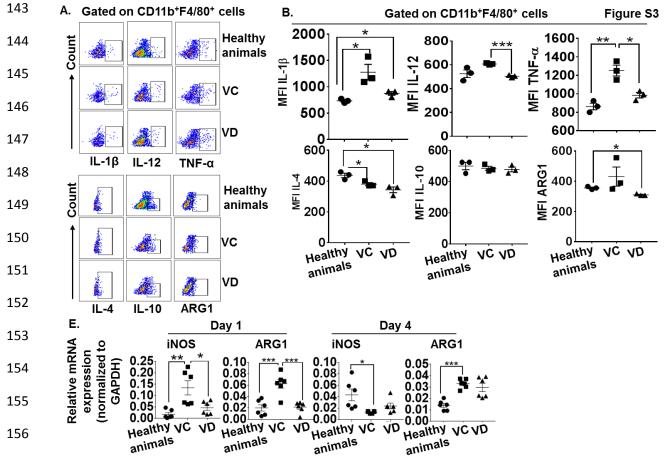


Figure S3. Bone fracture and 1,25(OH)₂D treatment had moderate effects on peripheral 158 159 lymphoid systems. C57BL/6 mice were subjected to fracture surgery and immediately after the fracture surgery received a daily dose of either vehicle (VC) or 100ng/kg 1.25 (OH)₂D (VD) 160 subcutaneously near fracture sites. Additionally, a group of healthy animals was also included as 161 a control. At days 1, 4, and 7 post treatments, splenocytes were analyzed by FACS and RT-162 163 qPCR. A) Representative FACS dot plots show the expressions of IL-1 β , IL-12, TNF- α , IL-4, IL-10 and arginase 1 (ARG1) among CD11b⁺F4/80⁺ monocytes/macrophages in splenocytes on day 164 1 after the treatments. **B**) Cumulative data of mean fluorescent intensities (MFIs) of IL-1 β , IL-165 12, TNF- α , IL-4, IL-10, and ARG1 in CD11b⁺F4/80⁺ monocytes/macrophages in splenocytes on 166 day 1 after the treatments. E) RT-qPCR analyses show the mRNA expressions of iNOS and 167 ARG1 in the splenocytes at days 1 and 4 after the treatments. *P<0.05, **P<0.01, ***P<0.001. 168 Two way ANOVA test. N=3. 169

- 170
- 171 172
- 173
- 174

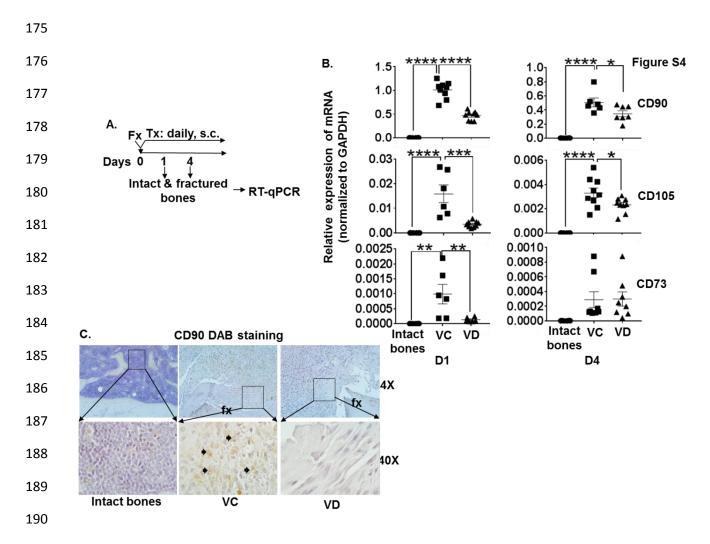


Figure S4. 1,25(OH)₂D, when locally administered at proinflammatory stage, decreased the expressions of MSC markers. A) C57BL/6 mice were subjected to fracture surgery (Fx). Immediately after the fracture surgery, the animals subcutaneously received a daily dose of either vehicle (VC) or 1,25(OH)₂D (100ng/kg) (VD) near fracture sites. Intact and fractured bones were collected from the animals at days 1, 4, and 7 for analysis by RT-qPCR. B) Data show the mRNA expressions of CD90, CD105, and CD73 at days 1 and 4. Data are means ± SEM. *P<0.05; **P<0.005; ***P<0.001; ****P<0.0001. ANOVA test. N=3. C) Paraffin sections of intact and fractured bones were stained for CD90 by DAB staining. Representative images are shown.

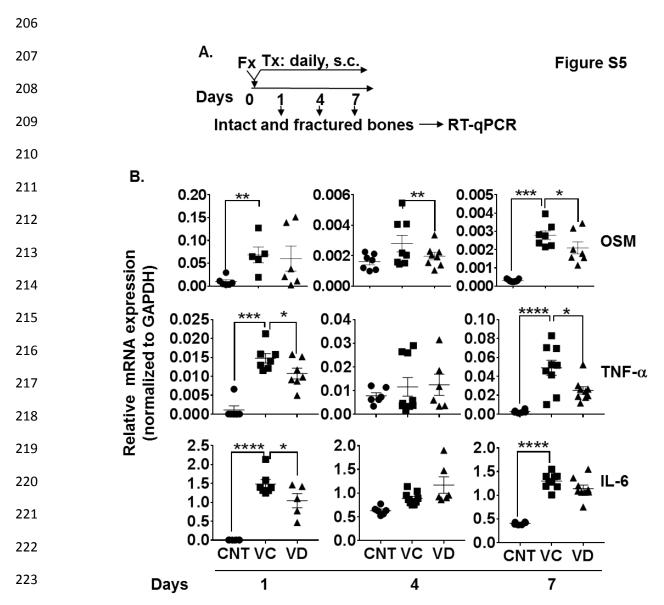


Figure S5. Local subcutaneous treatment with $1,25(OH)_2D$ during pro-inflammatory stage decreased the expression of marker genes of M1 macrophage-associated proteins important for osteogenic priming of MSCs and for bone repair. *A*) C57BL/6 mice were subjected to fracture surgery (Fx), treatments (Tx), and analyses as described in Figure S2. *B*) Data show the mRNA expressions of oncostatin-M (OSM), TNF- α , and IL-6 at days 1, 4, and 7 after the treatments.

- 230
- 231 232
- 233