

Supplementary Figure 1. Schematic of the workflow for generation of recombinant clonal Ig from single cell sorted human plasma cells

Supplementary figure 2. Representative FACS profile and gating strategy for single sorted plasma cells using IgA kappa patient's BM pre-enriched with anti-CD138 magnetic beads. Almost all of the clonal plasma cells were kappa positive.

	FWR1	CDR1	FWR2	CDR2	FWR3
IGHV3-48*03 640:Clone 2 640:Clones 6,11,15	EVQLVESGGGLVQPGGSLRLSCAAS	GFTFSSYE N N	MNWVRQAPGKGLEWVSY	ISSSGSTI D D	YYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYC
IGHV1-69-2*01 P008:Clones 29,36 Clone 30	QVQLVQSGAEVKKPGATVKISCKVS GL GL	GYTFTDYY -HP-S -HP-S	MHWVQQAPGKGLEWMGL -QRV -Q-ARRV	VDPEDGET TRI TRI	IYAEKFQGRVTITADTSTDTAYMELSSLRSEDTAVYYC MSLE-T MSLLE-T
IGHV3-30*03 P030: All Clones	QVQLVESGGGVVQPGRSLRLSCAAS	GFTFSSYG ASN-N	MHWVRQAPGKGLEWVAV	ISYDGSNK HTK-	YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC
IGHV1-3*01 637: All Clones	QVQLVQSGAEVKKPGASVKVSCKAS	GYTFTSYA	MHWVRQAPGQRLEWMGW	INAGNGNT	KYSQKFQGRVTITRDTSASTAYMELSSLRSEDTAVYYC
IGHV3-23*01 GD1: All Clones	QVQLVQGGLVQPGGSLRLSCAAS	GFTFSSYA PT	MSWVRQAPGKGLEVSA	ISGSGGST ET-	YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC

FWR1,2 and 3 - Framework region 1, 2 and 3 CDR1 and 2 - Complementary determining region 1 and 2

Supplementary figure 3. Heavy chain amino acid sequence alignment for plasma cells from MM and GD patients. The germline amino acid sequence is shown at the top for each sequence while subsituted residues are in black and dash indicates identity to germline line

Supplementary figure 4. Purification monoclonal Ig (mlg) from patient sera and verification of purity of isolated mlgs

mlgs were affinity purified from the sera of lipid reactive patients and the purity of mlgs were verified using isoelectric focusing (IEF) (A), the mlgs were run on SDS PAGE followed by immunoblotting using specific heavy chain antibody (B).(C) Purified mlg show similar position and GlcSph reactivity to that of the corresponding serum paraprotein in SPEP (top panel) and GlcSph specific immunoblot (bottom panel) respectively. Representative blots for patients with mlgG (R1) and mlgA (R2) are shown.

Supplementary Figure 5. Binding of paraprotein / M spike to sphingosine beads.

Plasma from 2 patients (SP01 and SP02) with lipid reactive gammopathies (1:50 dilution) were incubated with control or sphingosine beads and the flow through (FT) and elute (E) were analyzed by serum electrophoresis. Data are representative of similar data obtained independently in two labs (M.C./L.B. and M.T.F./N.M).

Supplementary Figure 6. Characterization of Glucosylsphingosine (GlcSph) containing liposomes and C18 beads

Dynamic light scatter (DLS) analysis of extruded liposome (C+P+G) before and after disruption with methanol (10 μ g/ml) upper panel; Concentration of GlcSph detected by LC/MS/MS of methanol disrupted C+P+G (2:6:2) liposomes and C+P+G (2:6:2) coated C18 beads both containing 5mg/ml of total lipids (lower panel).

Gating strategy used to define human CD38⁺CD138⁺plasma cell from bone marrow mononuclear cells obtained from tumor engrafted MIS^(KI)TRG6 mice for Mass cytometry (CyTOF) analysis.

Supplementary Table 1

GD-2

1-15

1-23

2

3

Ig gene sequence analysis by IgBLAST identify identical germline V(D)J gene segments and complementarity determining region (CDR)3 sequence between different clones from the same donor and somatic mutation present in the heavy and light chain Ig sequences.

Pt-Clone #	# of single cells sorted	# of clones obtained after PCR and sequencing	Lipid Reactivity		HEAVY CHAIN					LIGHT CHAIN											
				νн	D	RF	JH	CDR3(aa)	Length	Mutations	Vk	Jk	CDR3(aa)	Length	Mutations						
								MM patient with MG													
640-2				3-48	3-10	2	3	DLCYYGSGRCYNDDAFDI	18	8	3-15	5	QQYNIWPPIT	10	7						
640-6				3-48	3-10	2	3	DLCYYGSGRCYNDDAFDI	18	8	3-15	5	QQYNIWPPIT	10	7						
640-11	24	4	4	res	3-48	3-10	2	3	DLCYYGSGRCYNDDAFDI	18	8	3-15	5	QQYNIWPPIT	10	7					
640-15						3-48	3-10	2	3	DLCYYGSGRCYNDDAFDI	18	8	3-15	5	QQYNIWPPIT	10	7				
P008-29		3								1-69-2	1-26	1	3	DSRWEDDAFDI	11	18	1-5	2	HQYNSYSYA	9	6
P008-30	24		Yes	1-69-2	1-26	1	3	DSRWEDDAFDI	11	19	1-5	2	HQYNSYSYA	9	6						
P008-36				1-69-2	1-26	1	3	DSRWEDDAFDI	11	17	1-5	2	HQYNSYSYA	16	6						
P030-50		4							3-30	4-4	2	5	DFHGESFGKYSNEPLGP	17	12	1-5	2	QQYYSYLYT	9	10	
P030-52			N	3-30	4-4	2	5	DFHGESFGKYSNEPLGP	17	12	1-5	2	QQYYSYLYT	9	10						
P030-61			4	INO	3-30	4-4	2	5	DFHGESFGKYSNEPLGP	17	12	1-5	2	QQYYSYLYT	9	10					
P030-64				3-30	4-4	2	5	DFHGESFGKYSNEPLGP	17	11	1-5	2	QQYYSYLYT	9	10						
637-80	7-80								1-3	4-4	3	5	DRTTVTTINWFDP	13	2	1-33	5	QQYDNLPIT	9	4	
637-82	24	24 3	3 No	1-3	4-4	3	5	DRTTVTTINWFDP	13	2	1-33	5	QQYDNLPIT	9	4						
637-83				1-3	4-4	3	5	DRTTVTTINWFDP	13	1	1-33	5	QQYDNLPIT	9	4						
GD patient with MG																					
GD-1				1-23	1-15	2	3	AKALFPVSATDDAFDN	16	16	1-4	4	QRYNSFPLT	9	16						
	24	2	res		1		1		1	1	1		1	1	1						

AKALFPVSATDDAFDN

16

1-4

16

4

QRYNSFPLT

9

16

Supplementary Table 2

Table compares the percentages of different molecular classification (MC) subgroups between lipid non-reactive and lipid reactive patients. Data shown are cumulative data from cohort 1(n=76) and 2(n=274), (***, p<0.001, *p<0.05, Fisher's exact test)

Factor	All patients	Lipid non-reactive (n=255)	Lipid reactive (n=95)	P-value
CD1	5/350 (1.43%)	5/255 (2.0%)	0/95 (0%)	0.329
CD2	57/350 (16.3%)	35/255 (13.7%)	22/95 (23.2%)	0.0496*
HY	134/350 (38.6%)	113/255 (44.3%)	22/95 (23.2%)	0.0003***
LB	64/350 (18.3%)	39/255 (15.3%)	25/95 (26.3%)	0.0203*
MF	23/350 (6.6%)	19/255 (7.5%)	4/95 (4.2%)	0.3394
MS	35/350 (10.0%)	19/255 (7.5%)	16/95 (16.8%)	0.0149*
PR	31/350 (8.90%)	25/255 (9.8%)	6/95 (6.3%)	0.3991

Supplementary Table 3

Table shows comparison of percentage of patients based on the detection of high risk GEP signatures and cytogenetics in tumor cells between lipid reactive and non-reactive patients. Data shown is from patients in cohort 2 (n=274) with available cytogenetics and GEP signatures (**, p<0.01, *p<0.05, Fisher's exact test).

	Factor	Lipid reactive	Lipid non- reactive	P-value
	UAMS70 High risk	16/79 (20.3%)	47/195 (24.1%)	0.53
GEP	IFM 15 High risk	18/79 (22.8%)	26/195 (13.3%)	0.0686
Signatures	EMC/SKY92 High risk	5/79 (6.3%)	16/195 (8.2%)	0.802
	MYC-activation index >1	34/79 (43.0%)	84/195 (43.0%)	1
	gain 1q21	39/79 (49.3%)	70/195 (36.0%)	0.042*
Cytogenetics	del 8p21	25/79 (31.6%)	54/195 (27.7%)	0.557
	del 13q14	36/79 (45.6%)	80/195 (41.0%)	0.502
	del 17p13	9/79 (11.4%)	27/195 (13.8%)	0.694
	t(4;14)	12/79 (15.2%)	14/195 (7.2%)	0.0426*
	t(11;14)	16/79 (20.3%)	27/195 (13.8%)	0.201
	Percentage of aberrant	41/79 (52%)	93/195 (47.7%)	0.594
	plasma cell >95%			

n/N (%): n-Number with factor, N-Number with valid data for factor

Supplementary table: Antibodies

Antibody	Source	Clone	
CD117 (c-kit)	Biolegend	104D2	
CD11b	Fluidigm	ICRF44	
CD11c	Fluidigm	Bu15	
CD138	BD Biosciences	MI15	
CD14	Fluidigm	RM052	
CD152 (CTLA4)	Fluidigm	14D3	
CD16	Fluidigm	3G8	
CD185 (CXCR5)	Fluidigm	RF8B2	
CD19	Fluidigm	HIB19	
CD197 (CCR7)	Fluidigm	G043H7	
CD200	Fluidigm	Ox-104	
CD25	Fluidigm	2A3	
CD27	Fluidigm	L128	
CD272 (BTLA)	Fluidigm	MIH26	
CD274 (PDL1)	eBioscience	MIH1	
CD276 (B7H3)	Biolegend	MIH42	
CD3	Fluidigm	UCHT1	
CD33	Fluidigm	WM53	
CD34	Biolegend	581	
CD38	Fluidigm	HIT2	
CD4	Fluidigm	RPAT4	
CD45	Fluidigm	HI30	
CD45RO	Fluidigm	UCHL1	
CD56	Fluidigm	HCD56	
CD69	Fluidigm	FN50	
CD8	Fluidigm	RPAT8	
CD95	Fluidigm	DX2	
FOXP3	Fluidigm	259D/C7	
Granzyme	Fluidigm	GB11	
HLADR	Biolegend	L243	
КАРРА	Fluidigm	MHK-49	
Ki67	Fluidigm	Ki-67	
LAMBDA	Fluidigm	MHL-38	
mCD45	Fluidigm	30-F11	
TER119	Fluidigm	TER-119	
TIGIT	Biolegend	A15153G	