SUPPLEMENTAL METHODS

2 BM transplantation

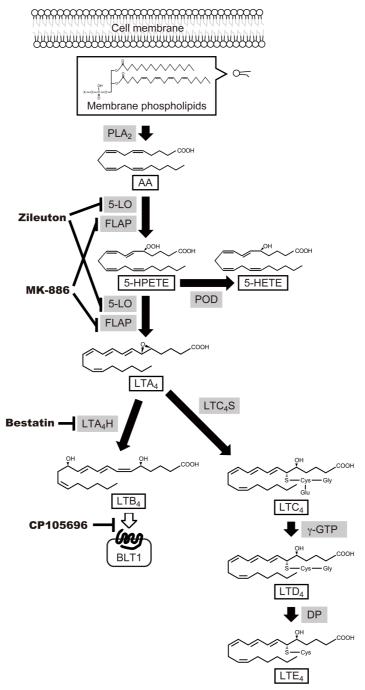
- 3 BM cells were collected from the both femurs and tibiae of donor C57BL/6-Ly5.1 mice
- 4 (kindly gifted by Dr. Yoshimura) (Young, 6–8 weeks old; Old, > 20 weeks old) and 10^7
- **5** cells were intravenously injected into lethally irradiated (10 Gy X-rays) male WT
- 6 recipients (C57BL/6J-Ly5.2 mice) (Young, 6–8 weeks old; Old, > 20 weeks old). At 28
- 7 days post-transplantation, BM cells and PBL were collected from all chimeras.

8

9

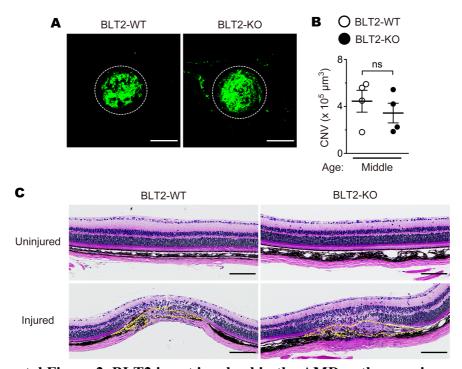
1

Flow cytometry analysis

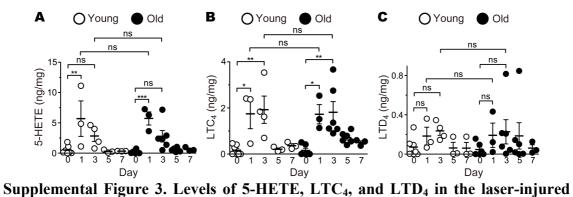

- 10 BM cells and PBL were incubated with mouse Fc blocker, followed by staining with
- 11 anti-CD45-FITC (2.5 μg/ml; clone 30-F11), anti-CD45.2-PE (2.5 μg/ml; clone 104)
- 12 (Thermo Fisher Scientific/eBioscience), and anti-CD45.1-APC (2.5 μg/ml; clone A20)
- 13 (Thermo Fisher Scientific/eBioscience). RAW274.7 cells were pretreated with 5 µM
- 14 Pyridone 6 (a JAK1 inhibitor) or 2 μM Cucurbitacin I (a STAT3 inhibitor) (purchased
- from EMD Millipore, Billerica, MA), or DMSO (vehicle, 0.05%) for 1 h, were then
- polarized by exposure to IL-4, IL-10, IL-13, and TGF-β1 (M2) or IFN-γ and LPS (M1)
- 17 for 24 h. Cells were stained with anti-F4/80-FITC (5 μg/ml), anti-CD11b-APC (1.25
- 18 μ g/ml), and biotin-labeled anti-mouse BLT1 (1.25 μ g/ml) or mouse IgG₁ (1.25 μ g/ml)
- 19 Abs. After washing with PBS/EDTA, cells were stained with Streptavidin-PE (0.6
- 20 µg/ml). Cells were washed and then analyzed in a flow cytometer (FACSCalibur or
- **21** FACSVerse). For all experiments, dead cells were excluded after staining with 7AAD.

22

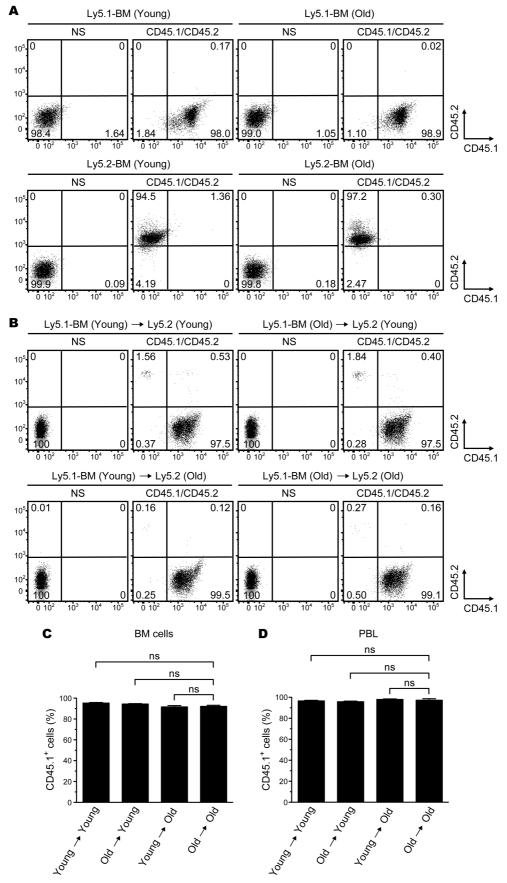
23 Quantitative RT-PCR


24 BM cells from WT mice were differentiated into BMDMs by treatment with 50 ng/ml

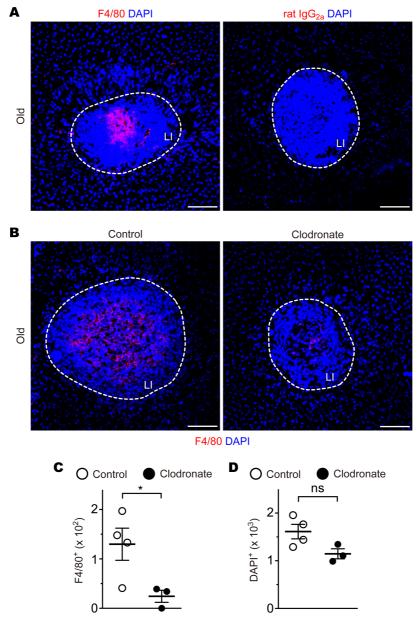
25 M-CSF for 5 days. BMDMs were cultured without M-CSF for 1 day, were then 26 polarized by 2 ng/ml mouse IFN-γ and 0.1 μg/ml LPS (M1) for 24 h or 50 ng/ml IL-4, 27 IL-10, and IL-13 (from mouse) and 4 ng/ml human TGF-β1 (M2) for 48 h. M0 28 macrophages were generated by culture in medium without cytokines. cDNA from M0-, 29 M1-, and M2-BMDMs was synthesized from total RNA using QuantiTect Reverse 30 Transcription kit. Target genes were amplified using a real-time PCR System, DNA 31 polymerase, SYBR Green I Dye and specific primers. Gene expression was normalized 32 to 18S rRNA (Rn18s) using the $\Delta\Delta$ CT method. The sequences of the primers are as 33 5'-ctcggaggtgtccagcac-3' follows: Ltb4r1: Forward, and Reverse, 34 5'-gacaggcaggtgtgtccttc-3'; Rn18s: Forward, 5'-gcaattattccccatgaacg-3' and Reverse, 35 5'-gggacttaatcaacgcaagc-3'; Mrc1: Forward, 5'-ccacagcattgaggagtttg-3', and Reverse, 36 5'-acageteateatttggetea-3'; Mgl2: Forward, 5'-ggagtetecaaagtttgetetaa-3', and Reverse, 37 5'-aggtgggtccaagagggat-3'; Pdcd1lg2: Forward, 5'-tgtgctgccttttctgtgtc-3', and 38 Reverse, 5'-gcagcatggtctgtgtcaat-3'; Arg1: Forward, 5'-cctgaaggaactgaaaggaaag-3', and 39 Reverse, 5'-ttggcagatatgcagggagt-3'; Retnla: Forward, 5'-ccctccactgtaacgaagactc-3', 40 5'-cacacccagtagcagtcatcc-3'; Chil3: and Reverse, Forward, 41 5'-gaacactgagctaaaaactctcctg-3', and Reverse, 5'-gagaccatggcactgaacg-3'; Nos2: 42 Forward, 5'-gggctgtcacggagatca-3', and Reverse, 5'-ccatgatggtcacattctgc-3'.



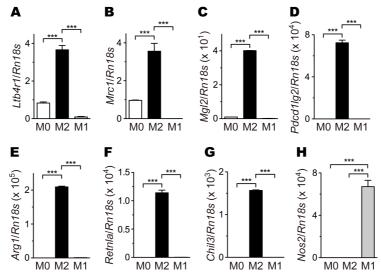
43 Supplemental Figure 1. The biosynthetic pathway for the leukotrienes.


44 LTB₄ is generated from arachidonic acid by 5-LO, FLAP, and LTA₄H. BLT1 is a high 45 affinity receptor for LTB₄. Zileuton, 5-LO inhibitor; MK-886, FLAP inhibitor; Bestatin, 46 LTA₄H inhibitor; CP105696, BLT1 antagonist. AA, arachidonic acid; 5-HPETE, 47 5-hydroperoxyeicosatetraenoic acid; 5-HETE, 5-hydroxyeicosatetraenoic acid; LTA₄, 48 leukotriene A₄; LTB₄, leukotriene B₄; LTC₄, leukotriene C₄; LTD₄, leukotriene D₄; 49 LTE₄, leukotriene E₄; Cys, cysteine; Glu, glutamate; Gly, glycine; PLA₂, phospholipase **50** A₂; FLAP, 5-lipoxygenase-activating protein; 5-LO, 5-lipoxygenase; POD, peroxidase; 51 LTA₄H, LTA₄ hydrolase; LTC₄S, LTC₄ synthase; γ-GTP, γ-glutamyltranspeptidase; DP, **52** dipeptidase.

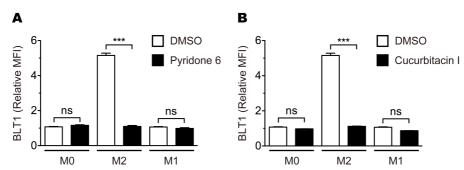
Supplemental Figure 2. BLT2 is not involved in the AMD pathogenesis. CNV images (A) and volume (B) in the laser-injured RPE-choroid from aged BLT2-WT (open circles) and BLT2-KO (filled circles) mice (> 20 weeks old). n=4 mice per group. (C) H&E staining of the uninjured and laser-injured retinas from aged BLT2-WT and BLT2-KO mice (> 20 weeks old). Yellow dotted lines denote the lesion areas. Bar=100 μ m (A, C). (B) ns, not significant (Student's t test). Results are representative of at least two independent experiments.


eyes. Time course of 5-HETE (A), LTC₄ (B), and LTD₄ (C) accumulation in laser-injured eyes of young (white bars) and old (black bars) WT mice (Young, 8 weeks old; Old, > 20 weeks old). n=3-7 per group. (A-C) *P < 0.05; **P < 0.01; ***P < 0.005; ns, not significant (1-way ANOVA with the Bonferroni's post hoc test). Results are representative of at least two independent experiments.

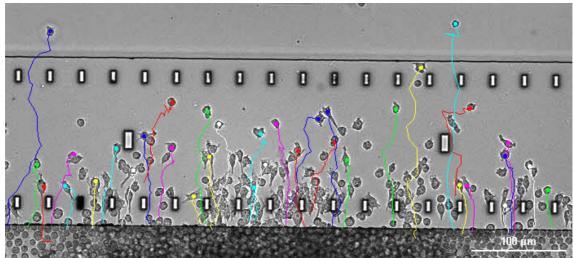
Supplemental Figure 4. Generation of BM chimeras using aged donor and

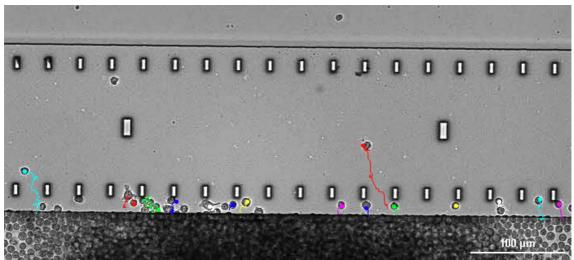

68 recipient.

(A) FACS analysis of a congenic marker in the BM cells from Ly5.1 (Ly5.1-BM) and Ly5.2 (Ly5.2-BM) mice (Young, 8 weeks old; Old, > 20 weeks old). Ly5.1 and Ly5.2 mice have CD45.1⁺ and CD45.2⁺ leukocytes, respectively. (B) FACS analysis of a congenic marker in the PBL from BM chimeras; Ly5.1-BM cells (Young) into Ly5.2 mice (Young), Ly5.1-BM cells (Old) into Ly5.2 mice (Young), L5.1-BM cells (Young) into Ly5.2 mice (Old). (C) Replacement rate of CD45⁺ leukocytes in the BM cells and PBL from BM chimeras. *n*=3–7 per group. These data were obtained using BM transplantation as described in Supplemental Methods. ns, not significant (1-way ANOVA with the Bonferroni's *post hoc* test). Young into Young, Ly5.1-BM cells (Young) into Ly5.2 mice (Young); Old into Young, Ly5.1-BM cells (Old) into Ly5.2 mice (Young); Young into Old, L5.1-BM cells (Young) into Ly5.2 mice (Old).



Supplemental Figure 5. Depletion of macrophages in the laser-injured RPE-choroid using clodronate liposome.


(A, B) Immunofluorescence staining of uninjected (A) and clodronate or control liposome-injected (B) RPE-choroid from aged WT mice (> 20 weeks old) with anti-F4/80 mAb or rat IgG_{2a} as an isotype control (red). Eyes were collected on Day 5 post-laser injury. Nuclei were visualized with DAPI (blue). LI (white dotted lines) denotes the location of laser injury. Control, control liposome; Clodronate, clodronate liposome. (C, D) The number of F4/80 $^+$ (C) and DAPI $^+$ (D) cells was counted as described above. n=3-4 per group. Bar=100 μ m (A, B). (C, D) *P < 0.05; ns, not significant (Student's t test).


Supplemental Figure 6. mRNA expression of M1 and M2 macrophage markers. Quantitative RT-PCR analysis of mRNA for various M1 and M2 macrophage markers in the M0-, M2, or M1-BMDMs from WT mice as described in Supplemental Methods. n=3 per group. (A-H) ***P < 0.005 (1-way ANOVA with Bonferroni's *post hoc* test).

Supplemental Figure 7. Down-regulation of BLT1 expression in M2-polarized RAW264.7 cells by inhibition of the JAK1-STAT3 signaling pathway.
FACS analysis of BLT1 expression in M2-RAW264.7 cells after treatment of 5 μM Pyridone 6 (a JAK1 inhibitor) or 2 μM Cucurbitacin I (a STAT3 inhibitor) (black bars), or vehicle (white bars). The Y-axis shows the MFI relative to that of an isotype control (mouse IgG₁). MFI, mean fluorescence intensity. n=3–9 per group. (A, B) ***P < 0.005; ns, not significant (1-way ANOVA with the Bonferroni's post hoc test).

Supplemental movie 1. Chemotaxis of M2-polarized RAW264.7 cells to LTB₄. *In vitro* chemotaxis of M2-RAW264.7 cells toward 100 nM LTB₄ was analyzed using TAXIScan-FL device. Bar=100 μm.

Supplemental movie 2. Chemotaxis of M2-polarized RAW264.7 cells to vehicle control.

In vitro chemotaxis of M2-RAW264.7 cells toward ethanol was analyzed using TAXIScan-FL device. Bar= $100 \mu m$.