Supplemental Data for:

Endothelial cell Pannexin1 modulates severity of ischemic stroke by regulating cerebral inflammation and myogenic tone

Miranda E Good, PhD¹ mgood@virginia.edu

Stephanie A Eucker MD/PhD² stephanie.eucker@duke.edu

Jun Li PhD ³ jl3fx@virginia.edu

Hannah M Bacon BS¹ hmb4pc@virginia.edu

Susan M Lang MD ¹ sl4pp@virginia.edu

Joshua T Butcher PhD ¹ jbutcher@augusta.edu

Tyler J Johnson BA ¹ tjj4k@virginia.edu

Ronald P Gaykema³ rg9d@virginia.edu

Manoj K Patel³ mkp5u@hscmail.mcc.virginia.edu

Zhiyi Zuo MD/PhD³ zz3c@virginia.edu

Brant E Isakson PhD ^{1,4}* brant@virginia.edu

¹ Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine

² Division of Emergency Medicine, Department of Surgery, Duke University

³ Department of Anesthesiology, University of Virginia School of Medicine

⁴ Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine

Supplemental Figure 1: Middle cerebral arteries from mice lacking EC Panx1 show similarly reduced myogenic tone development compared to posterior cerebral arteries. Percent myogenic tone (A), active diameter (B), and passive diameter (C) of isolated, pressurized middle cerebral arteries from EC Panx1 fl/fl and EC Panx1 Δ/Δ mice were analyzed. EC Panx1 fl/fl N = 3, and EC Panx1 Δ/Δ N = 3 mice. * p < 0.05. Two-way ANOVA/Sidak's multiple comparisons post-hoc test.