Supplemental Data for: Endothelial cell Pannexin1 modulates severity of ischemic stroke by regulating cerebral inflammation and myogenic tone Miranda E Good, PhD¹ mgood@virginia.edu Stephanie A Eucker MD/PhD² stephanie.eucker@duke.edu Jun Li PhD ³ jl3fx@virginia.edu Hannah M Bacon BS¹ hmb4pc@virginia.edu Susan M Lang MD ¹ sl4pp@virginia.edu Joshua T Butcher PhD ¹ jbutcher@augusta.edu Tyler J Johnson BA ¹ tjj4k@virginia.edu Ronald P Gaykema³ rg9d@virginia.edu Manoj K Patel³ mkp5u@hscmail.mcc.virginia.edu Zhiyi Zuo MD/PhD³ zz3c@virginia.edu Brant E Isakson PhD ^{1,4}* brant@virginia.edu ¹ Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine ² Division of Emergency Medicine, Department of Surgery, Duke University ³ Department of Anesthesiology, University of Virginia School of Medicine ⁴ Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine **Supplemental Figure 1:** Middle cerebral arteries from mice lacking EC Panx1 show similarly reduced myogenic tone development compared to posterior cerebral arteries. Percent myogenic tone (A), active diameter (B), and passive diameter (C) of isolated, pressurized middle cerebral arteries from EC Panx1 fl/fl and EC Panx1 Δ/Δ mice were analyzed. EC Panx1 fl/fl N = 3, and EC Panx1 Δ/Δ N = 3 mice. * p < 0.05. Two-way ANOVA/Sidak's multiple comparisons post-hoc test.