

Supplementary Fig. 1. qPCR analysis of miR-141 and miR-200c RNA expression levels (A) detected in two human hepatocellular carcinoma cell lines (HepG2 and Huh7) and (B) in primary mouse hepatocytes isolated from WT and miR-141/200c^{-/-} mice (n=3 per group). Data are represented as mean ± SEM. A Students unpaired t-test was used to determine differences between WT and miR-141/200c^{-/-} mice. * P<0.05 and ** P<0.01 indicate statistical significance.

Supplementary Fig. 2A. Serum glucose levels in WT vs miR-141/200c^{-/-} mice by calorimetric analysis (n=4-6 per group). Data are represented as mean ± SEM. * P<0.05 indicate statistical significance, one-way ANOVA with Newman-Keuls multiple comparisons test. **Supplementary Fig. 2B**. Liver cholesterol levels in WT-MCD vs miR-141/200c^{-/-}-MCD livers by GC-TOF mass spectrometry (n=5 per group). Data are represented as mean ± SEM.

Supplementary Fig. 2C. Representative image of Oil red O staining showed reduced neutral lipid staining in WT-MCD vs miR-141/200c^{-/-}-MCD livers. Images were quantified by digital image analysis using ImageJ software in 5 randomly chosen fields from 3 individual mice per group. Data are represented as mean ± SEM. Differences between WT and miR-141/200c^{-/-} mice were compared using a Students unpaired t-test and * P<0.05 indicate statistical significance.

Supplementary Fig. 3D. qPCR of gene expression in WT-MCD vs miR-141/200c^{-/-}-MCD livers (n=5 per group). Data are represented as mean ± SEM. Supplementary Fig. 3B. Liver H_2O_2 levels in WT-MCD vs miR-141/200c^{-/-}-MCD (n=5-6 per group). Data are represented as mean ± SEM.

WT KO

MCD

WT-MCD

Z miR-141/200c-/--MCD

Β

Amplex Red H₂O₂ Fluorescence (AU)

Ε

10000

8000

6000

4000

2000

0

С

Relative mRNA

10

8

6.

4

2

0

Supplementary Fig. 3C. qPCR of fibrosis-related gene expression in WT-MCD vs miR-141/200c^{-/-}-MCD livers (n=4-5 per group). Data are represented as mean ± SEM. * P<0.05 and ** P<0.01 indicate statistical significance, one-way ANOVA with Newman-Keuls multiple comparisons test.

ICAM

00

MMP2

•

Supplementary Fig. 3E. Western blot analysis of p-STAT3 and STAT3 in WT-MCD vs miR-141/200c^{-/-}-MCD livers. Densitometry of each blots relative to the loading control were quantified using ImageJ software. Samples were pooled from 5 individual mice per group.

-

α-SMA

Supplementary Fig. 4A. Western blot analysis for apoptosis marker, caspase-3, in WT-MCD vs miR-141/200c^{-/-}-MCD livers Densitometry of the blot relative to the loading control was quantified using ImageJ software. Samples were pooled from 5 individual mice per group. **Supplementary Fig. 4B.** Representative images of TUNEL assay for apoptosis in WT-MCD vs miR-141/200c^{-/-}-MCD livers. The total number of TUNEL positive cells were counted across 10 random high resolution fields and were expressed as average number of TUNEL positive cells per field (n=1 per group). Data are represented as mean ± SEM.

Supplementary Fig. 5. Reduced TGs in miR-141/200c^{-/-} **mice fed the MCD diet.** Livers of WT and miR-141/200c^{-/-} mice were prepared and subjected to LC-MS analysis for triglyceride (TG) lipid species (n=5 mice per group). (A) TG lipid species are presented as average ion peak height in order of increasing chain length (top to bottom). (B) Correlation matrix showing correlation coefficients for TG lipid species with Pearson r used for the distance measure. Positive correlations are displayed in red and negative correlations in blue color. Color intensity are proportional to the correlation coefficients. Correlated metabolites were highlighted with red box.

Supplementary Fig. 6. Lipidomics analysis revealed distinct changes in a number of lipid species associated with miR-141/200c. Livers of WT and miR-141/200c^{-/-} mice were prepared and subjected to LC-MS for lipidomics analysis of various lipid classes (n=5 mice per group) including (A) fatty acids and (C) phosphatidylethanolamine (PE) lipid species and are expressed as fold change relative to WT mice. Data are represented as mean \pm SEM. * *P* < 0.05 versus WT by Students unpaired t-test.

Supplementary Fig. 7. Correlation matrix showing distinct changes in amino acids from metabolomics analysis. Livers of WT and miR-141/200c^{-/-} mice were prepared and subjected to LC-MS for metabolomics analysis (n=5 mice per group). Correlation matrix showing correlation coefficients with Pearson r used for the distance measure. Positive correlations are displayed in red and negative correlations in blue color. Color intensity are proportional to the correlation coefficients. Correlated metabolites were highlighted with red box.

Supplementary Fig. 8. Metabolomics analysis revealed significantly altered metabolites associated with miR-141/200c-deficiency. Livers of WT and miR-141/200c^{-/-} mice were prepared and subjected to LC-MS for metabolomics analysis (n=5 mice per group). A Students ttest showing metabolites that are significantly altered between WT and miR-141/200c^{-/-} mice. Each dot represents a metabolite plotted as a compound number (*x*-axis) and statistical significance (-log 10 (p-value), *y*-axis).

SUPPLEMENTAL INFORMATION

Loss of miR-141/200c Ameliorates Hepatic Steatosis and Inflammation by

Reprograming Multiple Signaling Pathways in NASH

Melanie Tran, Sang-Min Lee, Dong-Ju Shin, and Li Wang

Table of Contents

Supplementary Table 1	2
Supplementary Table 2	4

Gene	Forward Primer Sequence (5' – 3')	Reverse Primer Sequence (3' – 5')	
miR-200c	CDCTAATACTGCCGGGTAATG		
antisense			
miR-141	GCCCGCTAACACTGTCTGGTAAAG		
antisense			
miR-200c	GTCGTATCCAGTGCAGGGTCCGAGG	TATTCGCACTGGATACGACCCATCA	
stem loop			
miR-141	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCCATCT		
stem loop			
Universal	GTGCAGGGTCCGAGGT		
U6	CTCGCTTCGGCAGCACA	AACGCTTCACGAATTTGCGT	
HPRT	CACAGGACTAGAACACCTGC	GCTGGTGAAAAGGACCTCT	
SREBP1c	TTGCTGGCTTGGTGATGCTATG	CTGGTGGAGGGCTGGAAGG	
FAS	TCGGGTGTGGTGGGTTTGG	GCGTGAGATGTGTTGCTGAGG	
MTTP	CATGCTTCTTCATCTGGTCCG	CACTTTGTCTTGCTGGGCCG	
SCD1	AGTTCCGCCACTCGCCTAC	GATAGTCAGTTGCTCGCCTCAC	
HMGCR	CCAAGCCCAATGAAGGGAAAGTC	CCACAGGAACAAGGCACACAG	
LDLR	GTGAGGTTCCTGTCCATCTTCTTC	GTTCTTCAGCCGCCAGTTCC	
CYP7A1	CACATCCTCCTGGCATTTACCC	TCCTCCTGTCTATGTCACACTACC	
SAA1	TGATGGAAGAGAGGCCTTTCA	TCAGGCAGTCCAGGAGGTCT	
IL-1β	CCTGTGTTTTCCTCCTTGCCT	GCCTAATGTCCCCTTGAATCAA	
ΤΝFα	GACCCTCACACTCAGATCATC	CCTCCACTTGGTGGTTTGCT	
IL-6	TGATGCACTTGCAGAAAACA	ACCAGAGGAAATTTTCAATAGGC	
IL-4	TGAACGAGGTCACAGGAGAA	CGAGCTCACTCTCTGTGGTG	
IL-10	ATCGATTTCTCCCCTGTGAA	TGTCAAATTCATTCATGGCCT	
F4/80	CCCCAGTGTCCTTACAGAGTG	GTGCCCAGAGTGGATGTCT	
LYG6	GACTTCCTGCAACACAACTAC	ACAGCATTACCAGTGATCTCA	

Supplementary Table 1. Sequences of primers used for quantitative-PCR

COL1A1	GCAGGGTTCCAACGATGTTG	GCAGCCATCGACTAGGACAGA
TGFβ	GGAGACCCCTGGATACCAAC	CAACCCAGGTCCTTCCTAAA
α-SMA	AGAGTTACGAGTTGCCTGATG	ATGAAGGATGGCTGGAACAG
iNOS	AATCTTGGAGCGAGTTGTGG	CAGGAAGTAGGTGAGGGCTTG
ARG1	TCCAAGCCAAAGTCCTTAGAG	AGGAGCTGTCATTAGGGACATC
C/ΕΒΡβ	CAACCTGGAGACGCAGCACAA	GGCAGCTGCTTGAACAAGTTC
HIF1α	GGGTACAAGAAACCACCCAT	GAGGCTGTGTCGACTGAGAA
STAT3	CAGAAAGTGTCCTACAAGGGCG	CGTTGTTAGACTCCTCCATGTTC
KLF4	GTGCCCCGACTAACCGTTG	GTCGTTGAACTCCTCGGTCT
IFR3	GGCTTGTGATGGTCAAGGTT	CATGTCCTCCACCAAGTCCT
ICAM	GTCTCGGAAGGGAGCCAAGTA	CGACGCCGCTCAGAAGAA
MMP2	ATGCGGAAGCCAAGATGTG	TTTCAGGGTCCAGGTCAGG
ΝϜκβ	ATGATCCCTACGGAACTGGGCAAA	TGGGCCATCTGTTGACAGTGGTAT

Supplementary Table 2. Clinical and biochemical characteristics of patients with non-alcoholic steatohepatitis (NASH) non fatty or NASH fatty livers.

Characteristics	NASH non fatty (n=16)	NASH fatty (n=20)
Age (years)	57.2 ± 2.6	57.9 ± 1.8
Gender, male: female	7/9	6/14
MELD score	26.8 ± 2.1	30.2 ± 1.8
Total bilirubin (mg/L)	9.8 ± 3.2	13.8 ± 3.8
Creatinine (mg/L)	3.9 ± 0.7	2.1 ± 0.31*
Albumin (g/dL)	2.8 ± 0.14	3.0 ± 0.14
AST (U/L)	74.4 ± 14.9	66.4 ± 6.8
ALP (U/L)	225.5 ± 38.1	160.3 ± 20.9

Data are presented as means ± sem. MELD, model for end-stage liver disease; AST, aspartate transaminase, ALP; alkaline phosphatase. * P<0.05 *versus* NASH non-fatty by Students unpaired t-test.