Supplementary Figures:

Figure S1: Heart rate and LV systolic pressure in Mdm2/p53 KO mice after β AR stimulation. A) Heart rate of anesthetized WT (n=13) and Mdm2/p53-KO (n=17) mice after increasing doses of isoproterenol. B) LV systolic pressure of the corresponding mice. Error bars indicate average \pm SEM. * p<0.05, two-way ANOVA, Bonferroni posttest.

Figure S2: AAV9-Mdm2 gene delivery rescues β **AR-induced cardiac responsiveness. A)** Lysates prepared from LV's of Mdm2/p53 KO mice injected with either AAV9-GFP or AAV9-Mdm2 were serially immunoblotted for Mdm2, and GAPDH. Hemodynamic parameters measured in anesthetized mice are shown in panels. B) maximal first derivative of LV pressure * p<0.05, ** p<0.01, Two-way ANOVA. C) minimal first derivative of LV pressure * p<0.05. B and C, n=8 (AAV9-GFP) and n=20 (AAV9-Mdm2). D) Comparison of dP/dt_{max} induced by 1000 pg ISO infusion in WT (n=3) and Mdm2/p53 KO (AAV9-GFP, n=8 and AAV9-Mdm2, n=20).

Figure S3: β AR subtypes in WT and Mdm2/p53 KO mice LVs. A) Competitive displacement of the non-selective antagonist radioligand [¹²⁵I](–)-iodocyanopindolol ([¹²⁵I]CYP) from β ARs in ventricular membranes isolated from WT and Mdm2/p53 KO hearts using the subtype-selective antagonist ICI-118551. Data were fit to a two-site competitive binding model wherein the fractions of high and low affinity sites correspond to proportions of β_2 AR and β_1 AR, respectively. B) β AR subtypes in LV of WT and Mdm2/p53 KO mice measured by using the subtype-selective β AR antagonist CGP20712A. Non-specific binding was defined by the non-selective antagonist propranolol. Experiments were performed in duplicate. n = 3 for WT and Mdm2/p53 KO. Error bars indicate average ± SEM.

Figure S4: Analyses of PKAα and phospholamban expression in WT and Mdm2/p53 KO mice. Heart lysates prepared from WT and Mdm2/p53 KO mice were immunoblotted for PKAα catalytic subunit (A), and phospholamban, PLN (C). In each case, the membrane was reprobed for GAPDH. The PKAα/GAPDH and PLN/GAPDH ratio in each group are summarized as bar graphs. (WT, n=5; KO, n=6).

	Wild Type	Mdm2/p53 KO		
	N = 5	N = 7		
	Compliance Parameters			
EDPVR (Linear) Slope	0.1 ± 0.0	0.4 ± 0.2		
EDPVR (Linear) Intercept	1.8 ± 3.0	-2.9 ± 6.3		
EDPVR (Quadratic) β	0.1 ± 0.0	0.1 ± 0.0		
coefficient				
EDPVR (Quadratic) α	2.1 ± 2.4	0.8 ± 0.4		
coefficient				
	Contractility Parameters			
ESPVR (Linear) Slope	6.2 ± 1.4	5.1 ± 2.2		
ESPVR (Linear) Intercept	-5.1 ± 4.3	-5.7 ± 5.2		
ESPVR (Quadratic) a	-0.4 ± 0.4	-0.3 ± 0.3		
ESPVR (Quadratic) V ₀	-0.7 ± 2.7	-0.6 ± 3.4		
ESPVR (Quadratic) E'max	13.2 ± 5.1	10.6 ± 5.2		
PRSW Slope	69.4 ± 18.4	49.7 ± 19.9		
PRSW Intercept	4.6 ± 5.7	1.2 ± 7.2		
dP/dtmax vs EDV slope	308.7 ± 69.4	268.1 ± 50.7		
dP/dtmax vs EDV intercept	-1.1 ± 3.3	0.1 ± 4.2		
Emax	8.0 ± 2.2	6.8 ± 3.0		

Table S1. Load Independent Hemodynamic Measures

Values are expressed as mean ± SD. Parameters of LV compliance (linear and quadratic derived EDPVR) and LV contractility (linear and quadratic derived ESPVR, PRSW, dP/dtmax vs EDV and Emax); Statistical comparisons made with Student's t-test. EDPVR=End Diastolic Pressure Volume Relationship; ESPVR=End Systolic Pressure Volume Relationship; a= coefficient of curvilinearity; Vo=Volume intercept; E'max= maximum slope of quadratic ESPVR; PRSW= Preload Recruitable Stroke Work; Emax=maximal elastance.

Mouse Genotype	Total mice	Sex	Treatment	Mice survived	Mice dead	% mortality
<i>Mdm2^{fl/fl}</i> MCM	12	Males	vehicle	11	1	9%
Mdm2 ^{fl/fl} MCM	20	Males	TAM	5	15	75%
Mdm2 ^{fl/fl} MCM	8	Females	TAM	4	4	50%
$Mdm2^{fl/fl}$	7	Males	TAM	7	0	0%
MCM	20	Males	TAM	20	0	0%
<i>Mdm2</i> ^{fl/+} MCM	16	Males	vehicle	16	0	0%
<i>Mdm2</i> ^{fl/+} MCM	16	Males	TAM	16	0	0%

Table S2. Tamoxifen treatment: census after 1week TAM