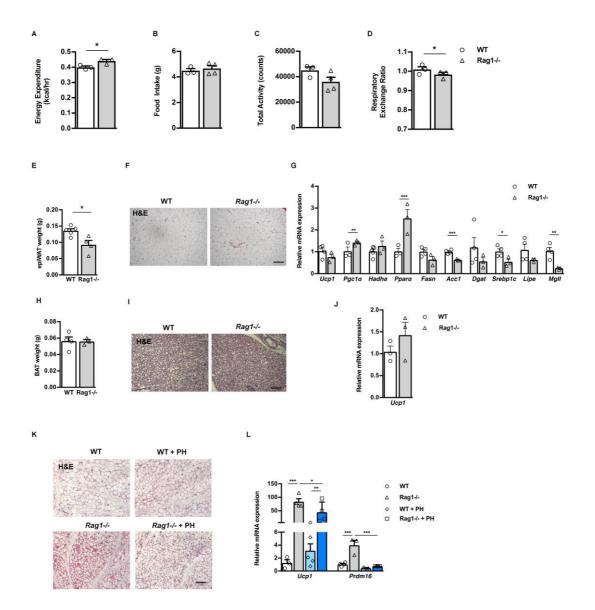
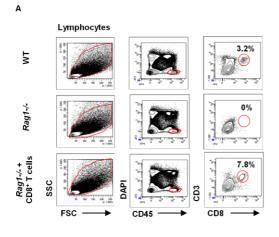
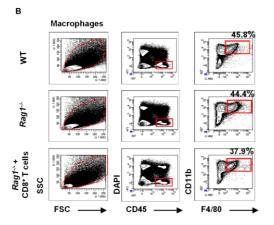
Supplemental Materials for

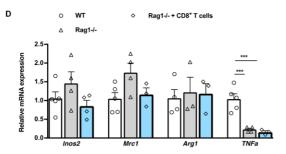

CD8⁺ T cells in beige adipogenesis and energy homeostasis

Maria Moysidou^{1,2,†}, Sevasti Karaliota^{1,†*}, Elisavet Kodela^{1,2}, Maria Salagianni¹, Yassemi Koutmani¹, Antonia Katsouda¹, Konstantia Kodella¹, Panagiotis Tsakanikas¹, Styliani Ourailidou¹, Evangelos Andreakos¹, Nikolaos Kostomitsopoulos¹, Dimitris Skokos³, Antonios Chatzigeorgiou⁴, Kyoung-Jin Chung⁴, Stefan Bornstein⁴, Mark W. Sleeman⁵, Triantafyllos Chavakis⁴, Katia P. Karalis^{1,4,6*}

*Correspondence: Katia Karalis (katia.karalis@childrens.harvard.edu) OR

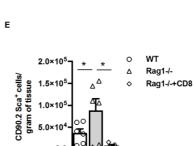

Sevasti Karaliota (skaral@bioacademy.gr).


SUPPLEMENTAL FIGURES

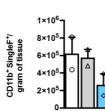


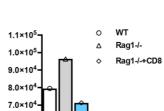
Supplemental Figure 1. Lymphocyte deficiency promotes more efficient lipid utilization in epiWAT.

(A-D) Assessment of metabolic behavior using indirect calorimetry, including energy expenditure adjusted to body weight (A) food intake (B), total activity (C) and respiratory exchange ratio (RER) (D). n = 4 per group. Data shown are derived from one experiment (E) Characterization of the absolute epiWAT weight of age and weight-matched WT and $Rag1^{-/-}$ mice. n=5 (F) Representative images of H&E staining. Scale bar: 100µm. (G) Gene expression analysis of Ucp1 and lipid metabolism related genes in the above groups. Data are presented as mean expression normalized to actin \pm S.E.M. n = 4 per group. P values, *p < 0.05, **p < 0.01, ***p < 0.001, Student's t-test. (H) Characterization of the BAT weight in age and weight-mathced WT and $Rag1^{-/-}$ mice. n=5 (I) Representative images of H&E staining in the above groups. Scale bar:100 µm. (J) Gene expression analysis for Ucp1 in the above groups. n = 4 per group. Data are mean expression normalized to actin \pm S.E.M. Data shown was derived from one out of two independent experiments. (K) Representative images of H&E staining in the scWAT of WT, Rag1^{-/-} and WT and Rag1^{-/-} mice administered PH (8mg/kg) pre-diluted in PBS, via the drinking water. Control groups have received PBS containing drinking water for 5 days. Scale bar: 100µm. (L) Gene expression analysis of thermogenic markers in the above groups. Data shown are derived from one experiment. Data are presented as mean expression normalized to actin \pm S.E.M. n = 4 per group. **p < 0.01, ***p < 0.001, 2-way Anova with Bonferroni's post test.



0 Δ


0

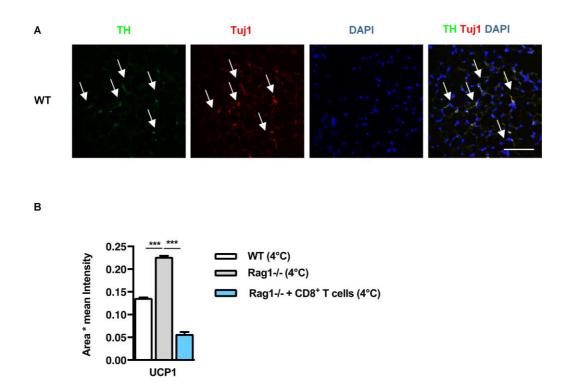

0.0

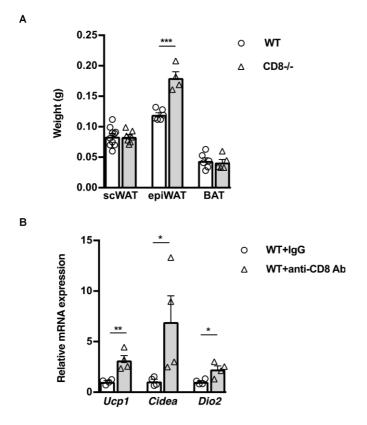
F

WΤ Rag1-/-Rag1-/-+CD8 T cells

6.0×10⁴

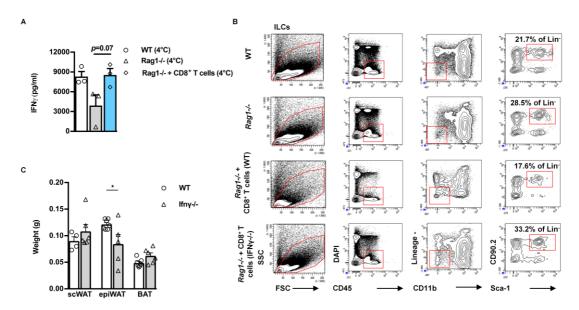
CD11b⁺ F4/80 cells/ gram of tissue


с


Supplemental Figure 2. Increased homing of CD8⁺ T cells in the scWAT of $Rag1^{-/-}$ following adoptive transfer

(A)Representative gating strategy to identify mouse CD8⁺ T cells in WT and Rag1^{-/-} mice treated either with PBS or adoptively transferred with CD8⁺ T cells (5x10⁶), once/week for 2 weeks. Percentages of CD3²⁺ CD8⁺ cells gated on Viable CD45⁺ DAPI⁻ cells with a low side scatter profile are depicted. Data shown are representative of two independent experiments. Flow cytometry was performed after pooling n = 5 mice per group (B) Gating strategy to identify murine CD11b⁺F480⁺ macrophages in WT mice or Rag1^{-/-} mice treated with PBS or adoptively transferred with CD8⁺ T cells (5x10⁶), once/week for 2 weeks. Percentages of CD11b⁺F480⁺ cells gated on Viable CD45⁺ DAPI⁻ cells with a low side scatter profile are depicted. Data shown are one experiment. Flow cytometry was performed after pooling n=5 mice per group. (C) The absolute number of resident macrophages per gram of tissue in the above treatments. Data shown are one experiment. Flow cytometry was performed after pooling n = 5 mice per group. (D) Gene expression analysis for M1 (inos2, $TNF\alpha$) and M2 (Arg1, Mrc1) markers in the above groups. n=4 per group. Data are mean expression normalized to actin \pm S.E.M. Data shown are derived from one experiment. ***p < 0.001, Student's t-test. (E) The absolute numbers of total lineage (Lin)-negative CD90.2⁺ Sca-1⁺ ILCs per gram of tissue in the scWAT of WT, Rag1^{-/-} and Rag1^{-/-} mice reconstituted with CD8⁺ T cells. n=5 mice per group. Data shown are representative of two independent experiments and were analyzed by Student's t-test. Values are means \pm S.E.M. *p < 0.05. (F) The absolute number of CD11b⁺ Siglec F⁺ gated on the viable CD45⁺DAPI⁻ cells per gram of tissue in the scWAT of WT, $Rag1^{-1}$ and $Rag1^{-1}$ mice reconstituted with CD8⁺T cells. n = 5 per group. Data shown are derived from one experiment. Flow cytometry was performed after pooling $n \ge 5$ mice per group.

Supplemental Figure 3. Reconstitution of $Rag1^{-/-}$ mice with CD8⁺T cells compromised significantly their response to cold.


(**A**)Representative images of double IF staining for TH and Tuj1 of WT scWAT at baseline conditions. n=3 per group. Scale bar: 100µm. (**B**) Quantitation of mean intensity of UCP1 protein expression following cold exposure in the scWAT of WT, $Rag1^{-/-}$ and $Rag1^{-/-}$ mice reconstituted with CD8⁺ T cells (5x10⁶), once/week for 2 weeks. n = 3 per group. Data are means ± SD intensity of 15 patches for every image. ***p < 0.001. Data shown are derived from one out of two separate experiments.

Supplemental Figure 4. Impact of CD8⁺ T cell depletion in the development of beige adipogenesis

(A) Characterization of the absolute scWAT, epiWAT and BAT weight of WT and $IFN\gamma^{-/-}$ mice. n=5. Data are presented as means ± S.E.M. ***p < 0.001.

(B) Relative expression of beige genes (*Ucp1, Cidea, Dio2*) of age and weight-matched WT either received anti-CD8 antibody or IgG. n=4. Data are mean expression normalized to actin \pm S.E.M. **p* < 0.05, ***p* < 0.01. t-test.

Supplemental Figure 5. IFNγ deficiency is associated with increase in total ILCs in the scWAT.

(A)ScWAT tissue levels of IFN_Y (pg/ml) in WT mice or $Rag1^{-/-}$ following adoptive transfer of $5x10^{6}$ CD8⁺T cells, or PBS injection (control), once/week for 2 weeks. n = 3 per group. Data are presented as means ± S.E.M. p = 0,07, 1-way Anova with Bonferroni's post test. (B) Gating strategy for the identification of lineage (Lin)-negative CD90.2⁺ Sca-1⁺ ILCs of WT or $Ifn\gamma^{-/-}$ scWAT, pre-gated on live CD45⁺ DAPI⁻ cells. Percentage of cells stained positive for CD90.2⁺ Sca-1⁺ is depicted on the flow cytometry plots. Data shown are from one single experiment. Flow cytometry was performed after pooling n ≥ 4 mice per group. (C) Characterization of the absolute scWAT, epiWAT and BAT weight of WT and $IFN\gamma^{-/-}$ mice. n=6. Data are presented as means ± S.E.M. *p < 0.05, t-test.

Supplemental Table 1: Primers used for real-time PCR

Gene	Forward	Reverse
Actin	5'-CCCAGGCATTGCTGACAGG- 3'	5'-TGGAAGGTGGACAGTGAGGC-3'
Pgc1α	5'-TCACCCTCTGGCCTGACAAATCTT- 3'	5'-TTTGATGGGCTACCCACAGTGTCT-3'
Lipe	5'-AAGGACTTGAGCAACTCAGA-3'	5'-TTGACTATGGCTGACGTGTA-3'
Pparα	5'-AAGAACCTGAGGAAGCCGTTCTGT-3'	5'-GCAGCCACAAACAGGGAAATGTCA-3'
MgII	5'-GACGGACAGTACCTCTTTTG- 3'	5'-AGAAAAGTAGGTTGGCCTCT-3'
Hadha	5'-AGCAAGTGTTCAAAGGGCTGAACG-3'	5'-TGTGCTTTACACCGAGGTCCTCAA- 3'
Ucp1	5'-TCTTCTCAGCCGGAGTTTCAGCTT-3'	5'-ACCTTGGATCTGAAGGCGGACTTT-3'
Cidea	5'-ATCACAACTGGCCTGGTTACG-3'	5'-TACTACCCGGTGTCCATTTCT-3'
Prdm16	5'-CAGCACGGTGAAGCCATTC-3'	5'-GCGTGCATCCGCTTGTG-3'
Dio2	5'-CAGTGTGGTGCACGTCTCCAATC-3'	5'-TGAACCAAAGTTGACCACCAG-3'
Fgf21	5'-TACACAGATGACGACCAAGA-3'	5'-GGCTTCAGACTGGTACACAT-3'
AdR1α	5'-GGGTCCTTCTTCCCGAATTT-3'	5'-GCTGGAGCATGGGTATATGATAG-3'
AdR3β	5'-TGAAACAGCAGACAGGGACA-3'	5'-TCTTGACACTCCCTCAGCAC-3'
Fasn	5'-CTCCGTGGACCTTATCACTA-3'	5'-CTGGGAGAGGTTGTAGTCAG-3'
Acc1	5'-TAACAGAATCGACACTGGCTGGCT-3'	5'-ATGCTGTTCCTCAGGCTCACATCT-3'
Dgat	5'-TCATGGGTGTCTGTGGGTTA-3'	5'-CAGAGTGAAACCAGCCAACA-3'
Srepb1c	5'-TGGCTTGGTGATGCTATGTT-3'	5'-TAAGGGGTTGGGAGTAGAGG-3'
Cyclophilin	5'- CATCCTAAAGCATACAGGTCCTG-3'	5'-TCCATGGCTTCCACAATGTT-3'
iNOS	5'- CAGAGGACCCAGAGACAAGC-3'	5'-CCTGGCCAGATGGGCCTCTA-3'
Arg1	5'- AGACCACAGTCTGGCAGTTG-3'	5'-CCACCCAAATGACACATAGG-3'