CF airway smooth muscle transcriptome reveals a role for PYK2

Daniel P. Cook,1,2 Ryan J. Adam,3 Keyan Zarei,3 Benjamin Deonovic,4 Mallory R. Stroik,1 Nicholas D. Gansemer,1 David K. Meyerholz,5 Kin Fai Au,1,4 and David A. Stoltz1,2,3,6

1Department of Internal Medicine, 2Department of Molecular Physiology and Biophysics, and 3Department of Biomedical Engineering, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA. 4Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, USA. 5Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA. 6Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA.

Abnormal airway smooth muscle function can contribute to cystic fibrosis (CF) airway disease. We previously found that airway smooth muscle from newborn CF pigs had increased basal tone, an increased bronchodilator response, and abnormal calcium handling. Since CF pigs lack airway infection and inflammation at birth, these findings suggest intrinsic airway smooth muscle dysfunction in CF. In this study, we tested the hypothesis that CFTR loss in airway smooth muscle would produce a distinct set of changes in the airway smooth muscle transcriptome that we could use to develop novel therapeutic targets. Total RNA sequencing of newborn wild-type and CF airway smooth muscle revealed changes in muscle contraction–related genes, ontologies, and pathways. Using connectivity mapping, we identified several small molecules that elicit transcriptional signatures opposite of CF airway smooth muscle, including NVP-TAE684, an inhibitor of proline-rich tyrosine kinase 2 (PYK2). In CF airway smooth muscle tissue, PYK2 phosphorylation was increased and PYK2 inhibition decreased smooth muscle contraction. In vivo NVP-TAE684 treatment of wild-type mice reduced methacholine-induced airway smooth muscle contraction. These findings suggest that studies in the newborn CF pig may provide an important approach to enhance our understanding of airway smooth muscle biology and for discovery of novel airway smooth muscle therapeutics for CF and other diseases of airway hyperreactivity.

Introduction

There is increasing awareness that an asthma-like phenotype is present in some people with cystic fibrosis (CF), often termed “CF asthma.” Whether dysfunction of the CF transmembrane conductance regulator (CFTR) anion channel contributes directly to the development of CF asthma is not clear. However, several lines of evidence suggest that this might be the case. First, a recent meta-analysis observed an increased risk for asthma among carriers of CFTR mutations compared with noncarriers (1). Second, acute CFTR potentiation, in people with CF and the G551D-CFTR mutation, corrected smooth muscle abnormalities with improvements in airway distensibility and vascular tone (2). Finally, investigations by our group and others have shown that loss or inhibition of CFTR function in animal models can affect smooth muscle tone (2–11). Collectively, these studies indicate that the asthma-like symptoms experienced by individuals with CF could be, in part, due to functional loss of CFTR.

We recently reported that, in porcine airway smooth muscle cells, CFTR localizes to the sarcoplasmic reticulum and that airway smooth muscle from newborn CF pigs has increased contractile tone and disrupted calcium handling (11). Because CF pigs lack airway inflammation at birth (12), these data indicate that loss of CFTR causes a primary defect in airway smooth muscle cell function.

In many cell types involved in airway narrowing, calcium plays an important regulatory role and can act through excitation-transcription coupling to modulate signal transduction pathways and subsequently gene transcription (13). Previous studies have identified transcriptional changes related to airway hyperresponsiveness (14–16). However, cell types other than smooth muscle (e.g., immune and epithelial cells) may have driven both transcriptional changes and airway hyperresponsiveness in these prior studies. Therefore, studies in the CF pig, in which airway smooth muscle hyperresponsiveness is a primary defect, may lead to...
In this study, we tested the hypothesis that CFTR loss in newborn pig airway smooth muscle would produce a distinct set of changes in the airway smooth muscle transcriptome. We were able to use the CF airway smooth muscle transcriptional signature and connectivity mapping to generate a list of small molecules predicted to reverse airway smooth muscle dysfunction and to identify a role for proline-rich tyrosine kinase 2 (PYK2) in airway smooth muscle biology and CF airway disease. These findings suggest that the CF pig may represent an important model for understanding the role of CFTR in airway smooth muscle and represent a unique tool for developing therapeutic targets for airway smooth muscle dysfunction.

Results

Loss of CFTR causes differential gene expression in porcine airway smooth muscle. Previously, we investigated airway smooth muscle from CFTR−/− pigs and found an abnormal contractile phenotype and a disruption in calcium handling (11). Because calcium regulates gene transcription, we hypothesized that CFTR loss causes transcriptional changes in airway smooth muscle. To test this hypothesis, we used laser-capture microdissection to isolate airway smooth muscle from CFTR+/+ and CFTR−/− newborn pigs and performed RNA-sequencing (RNA-seq) analysis. Next-generation sequencing and gene analysis identified 604 differentially expressed genes between CFTR+/+ and CFTR−/− airway smooth muscle (Figure 1, A and B, and Supplemental Table 1; supplemental material available online with this article; https://doi.org/10.1172/jci.insight.95332DS1). Some of these differentially expressed genes have important roles in airway smooth muscle contractile function, including ROCK1 (Rho associated coiled-coil containing protein kinase 1), MYLK (myosin light chain kinase), CALM6 (calmodulin-6), and MYL6 (myosin light chain 6) (17). Quantitative RT-PCR was used to validate several of the mRNA transcript changes in airway smooth muscle–related genes (Supplemental Table 2).

Gene set enrichment analysis, using MetaCore and Ingenuity Pathway Analysis (IPA), identified functional networks overrepresented within the 604 genes (Figure 1C). The top two enriched networks included gene ontology (GO) terms related to cytoskeletal rearrangement/muscle contraction and cell migration/
formed a proteomic screen using an antibody array to identify proteins differentially regulated in CFTR−/− therapeutics for airway smooth muscle dysfunction (25) (Figure 3A). To test this hypothesis, we looked passing over 30 different regulatory pathways. Comparing whole-cell lysates from WT and CFTR−/− proteins and their phosphorylation sites, with some proteins represented by multiple antibodies, encompassing airway smooth muscle cells (24). The array contains approximately 1,300 antibodies against individual smooth muscle, we found 43 proteins with greater than 2-fold change between CFTR−/− airway smooth muscle, we predicted that we could use these transcriptional alterations to identify novel changes outside of the canonical muscle machinery.

Protein analysis of CF airway smooth muscle shows pathway dysregulation similar to the CFTR−/− transcriptome. To investigate whether proteomic changes were reflective of transcriptional network alterations, we performed a proteomic screen using an antibody array to identify proteins differentially regulated in CFTR−/− airway smooth muscle cells (24). The array contains approximately 1,300 antibodies against individual proteins and their phosphorylation sites, with some proteins represented by multiple antibodies, encompassing over 30 different regulatory pathways. Comparing whole-cell lysates from WT and CFTR−/− airway smooth muscle, we found 43 proteins with greater than 2-fold change between CFTR+/+ and CFTR−/− airway smooth muscle (6 sites comprising 6 different proteins down and 39 sites comprising 37 proteins up, Figure 2A). When we compared the differential protein expression to the differential transcript expression, we observed a significant positive correlation (Supplemental Figure 1). These results indicate that loss of CFTR produces transcript changes that subsequently alter protein expression.

CFTR loss altered 93 phosphorylation sites greater than 2-fold (5 sites had decreased phosphorylation, 88 sites had increased phosphorylation, Figure 2B). Enrichment analysis of proteins dysregulated in total abundance and phosphorylation indicated that “phosphorylation” and “kinase” were the most enriched terms. This result was expected, given that the array used was specifically designed to detect phosphorylated proteins. However, consistent with our findings at the transcriptional level, other pathways reflecting MAPK activity, cell death, transcription, cell proliferation, and the PI3K cascade were also dysregulated (Figure 2C).

Connectivity mapping identified compounds that elicit an mRNA expression signature opposite of that observed in CFTR-deficient airway smooth muscle. Since we found broad-scale changes in the transcriptome of CFTR−/− airway smooth muscle, we predicted that we could use these transcriptional alterations to identify novel therapeutics for airway smooth muscle dysfunction (25) (Figure 3A). To test this hypothesis, we looked
A

Figure 3. Connectivity mapping can be used to generate therapeutic targets based upon the CF airway smooth muscle transcriptional signature. (A) Overview of approach. Transcriptional profiles from two distinct groups (denoted by blue and orange in this schematic; for our study WT and CFTR−/− porcine airway smooth muscle) are queried against the LINCS database, which contains compound signatures. Compounds are ranked based upon the direction and strength of enrichment with the transcriptional profile of CFTR−/− airway smooth muscle to generate a list of positively and negatively correlated compounds. (B) From this nonbiased approach, a list of potential candidate small molecules that elicit a transcriptional signature negatively correlated to the CF airway smooth muscle transcriptome was generated. (C) The odds ratio of an association for LINCS-generated compounds from the CFTR−/− airway smooth muscle gene signature with the PubMed database terms “asthma,” “chronic kidney disease,” and “diabetes” was determined (see Methods for further details). Data are plotted with mean and 95% confidence intervals. “Diabetes” and “chronic kidney disease” were used as non-airway smooth muscle–mediated disease controls.

PYK2 is expressed in airway smooth muscle. Since NVP-TAE684 has been shown to inhibit both PYK2 and ALK, we next determined whether airway smooth muscle expresses PYK2 and/or ALK mRNA in situ. Using the RNA-seq data, we found that PYK2 transcripts were present in both WT and CFTR−/− airway smooth muscle, while ALK transcript levels were below our quantitative threshold (Figure 4A). To confirm these findings, quantitative RT-PCR was performed and revealed that PYK2 transcripts were present in airway smooth muscle and similar levels were present between WT and CFTR−/− airway smooth muscle (Figure 4, B and C). Immunocytochemistry of cultured airway smooth muscle cells showed positive immunostaining for PYK2 (Figure 4D). Collectively, these data show that PYK2 is expressed at both the transcript and protein levels in airway smooth muscle.

PYK2 blockade inhibits cholinergic-induced airway smooth muscle contraction. Knowing that CFTR−/− airway smooth muscle displays increased contractile tone and transcriptional profile changes, we hypothesized that PYK2 inhibition would prevent airway smooth muscle contraction. To confirm that NVP-TAE684 inhibits PYK2, we first added NVP-TAE684 to recombinant PYK2 and observed a nearly 75% reduction in PYK2 activity (Figure 5A). We next tested the effect of PYK2 inhibition on airway smooth muscle contraction in lung slices from WT newborn pigs. Compared with lung slices pretreated with DMSO, methacholine-induced for small molecules whose transcriptional signature negatively correlated to the CFTR−/− airway smooth muscle signature. We used the Library of Integrated Network-Based Cellular Signatures (LINCS) to compare the CFTR−/− airway smooth muscle mRNA expression signature to the transcriptional signatures elicited by treatment of approximately 150 cell lines with hundreds of small-molecule compounds.

With this approach, we generated a list of potential candidate small molecules that elicited a transcriptional signature negatively correlated to CFTR−/− airway smooth muscle (Figure 3B). One of the small-molecule compounds with a high-connectivity score was GSK-1059615, a pan PI3K inhibitor. Inhibition of PI3K has been shown to reduce airway remodeling (26, 27), reduce ovalbumin-induced airway hyperresponsiveness in mice (28), and reverse carbachol-induced constriction of human airways (18). The presence of this airway-modifying drug on our list of potential compounds supported our hypothesis that connectivity mapping could be used to identify therapeutics for airway smooth muscle dysfunction.

To assess the specificity of our findings, as applied to asthma, we performed a literature review using the PubMed database and screened for compound associations with the disease MeSH term “asthma.” In total, when analyzing the 60 compounds with the highest connectivity scores, we found an enrichment of compounds that have associations with the MeSH term asthma, as compared with a list of 60 compounds showing little or no connectivity (Figure 3C). A similar analysis was performed using two MeSH terms unrelated to airway smooth muscle, “diabetes mellitus” and “chronic kidney disease.” The 60 top compounds did not show significant associations with either of these terms.

Based upon these discovery validations, we decided to pursue the small molecule with the highest connectivity score, NVP-TAE684, a potent anaplastic lymphoma kinase (ALK) and PYK2 inhibitor (29, 30). NVP-TAE684’s effects on smooth muscle are unknown. However, the finding that the transcriptional profile of NVP-TAE684 negatively correlated with the CFTR−/− airway smooth muscle signature suggested that the small molecule might inhibit airway smooth muscle contraction.

PYK2 is expressed in airway smooth muscle. Since NVP-TAE684 has been shown to inhibit both PYK2 and ALK, we next determined whether airway smooth muscle expresses PYK2 and/or ALK mRNA in situ. Using the RNA-seq data, we found that PYK2 transcripts were present in both WT and CFTR−/− airway smooth muscle, while ALK transcript levels were below our quantitative threshold (Figure 4A). To confirm these findings, quantitative RT-PCR was performed and revealed that PYK2 transcripts were present in airway smooth muscle and similar levels were present between WT and CFTR−/− airway smooth muscle (Figure 4, B and C). Immunocytochemistry of cultured airway smooth muscle cells showed positive immunostaining for PYK2 (Figure 4D). Collectively, these data show that PYK2 is expressed at both the transcript and protein levels in airway smooth muscle.

PYK2 blockade inhibits cholinergic-induced airway smooth muscle contraction. Knowing that CFTR−/− airway smooth muscle displays increased contractile tone and transcriptional profile changes, we hypothesized that PYK2 inhibition would prevent airway smooth muscle contraction. To confirm that NVP-TAE684 inhibits PYK2, we first added NVP-TAE684 to recombinant PYK2 and observed a nearly 75% reduction in PYK2 activity (Figure 5A). We next tested the effect of PYK2 inhibition on airway smooth muscle contraction in lung slices from WT newborn pigs. Compared with lung slices pretreated with DMSO, methacholine-induced smooth muscle dysfunction.
airway narrowing was significantly ($P < 0.05$) reduced in NVP-TAE684–treated lung slices (Figure 5B). These results indicate that NVP-TAE684 can decrease cholinergic-induced airway contractility in porcine lung slices.

We hypothesized that NVP-TAE684’s effects were, in part, due to PYK2 inhibition in airway smooth muscle cells. Since precision-cut lung slices possess numerous cell types, including chondrocytes, airway epithelial cells, and smooth muscle cells (31), we tested NVP-TAE684’s effects directly on tracheal smooth muscle in the absence of airway epithelial cells. Isolated tracheal smooth muscle samples from WT pigs pretreated with NVP-TAE684 generated less force than DMSO-pretreated control samples (Figure 5C). The EC$_{50}$ for acetylcholine was similar between control and NVP-TAE684 groups, suggesting that the effect of PYK2 inhibition is unlikely due to competitive effects on cholinergic binding at the muscarinic receptor.

PYK2 inhibition reduces myosin light chain phosphorylation. To investigate if PYK2 inhibition causes alterations in the contractile machinery of airway smooth muscle cells, we quantified regulatory myosin light chain (MLC) phosphorylation. Increased MLC phosphorylation is required for actin-myosin interactions, leading to airway smooth muscle contraction. NVP-TAE684 treatment significantly diminished acetylcholine-induced MLC phosphorylation compared with that in DMSO control samples (Figure 6, A and B). These results suggest that PYK2 is an upstream regulator of MLC phosphorylation and PYK2 inhibition decreases MLC phosphorylation.
Figure 6. PYK2 inhibition decreases myosin light chain phosphorylation and cholinergic-induced airway narrowing. (A) Immunoblot for total and phosphorylated regulatory myosin light chain (MLC and MLCp, respectively) in DMSO and NVP-TAE684 WT airway smooth muscle cells. (B) Quantification of percentage myosin light chain phosphorylation in WT airway smooth muscle cells from DMSO- or NVP-TAE684–treated samples (n = 3 donors per group). Individual data points are shown, horizontal lines represent the mean, and error bars denote SEM. Unpaired Student’s t test was used for analysis. *P < 0.05. (C) Newtonian lung resistance following methacholine (MCh) treatment in WT mice pretreated with control vehicle (DMSO, blue circles) or NVP-TAE684 (orange circles) (n = 10 animals per group). Data are shown as mean values with SEM and are fitted with a 4-parameter logistic regression algorithm (solid line). P < 0.05 for curve comparisons between groups. (D) Histological H&E section of an airway with surrounding lung parenchyma from DMSO and NVP-TAE684–treated mice following methacholine challenge. Scale bar: 100 μm (left); 35 μm (right).

PYK2 inhibition reduces in vivo cholinergic-induced airway hyperresponsiveness in mice. We next evaluated the in vivo effects of PYK2 inhibition on pulmonary airway reactivity by measuring airway resistance. Wild-type mice received daily intraperitoneal injections of NVP-TAE684 for 3 days prior to conducting in vivo lung resistance measurements. NVP-TAE684 treatment significantly reduced methacholine-induced increases in airway resistance as compared with control mice treated with DMSO (Figure 6C). Morphological analysis of histological sections taken from the lung parenchyma and conducting airways demonstrated that there were no significant histological changes caused by NVP-TAE684 treatment (Figure 6D). These findings indicate that (a) PYK2 inhibition can prevent cholinergic-induced airway reactivity in vivo and (b) the LINCS approach to novel compound discovery using a porcine model can identify targets across species.

PYK2 inhibition reverses the CF-induced airway hyperresponsive phenotype. It has previously been shown that PYK2 phosphorylation correlates with PYK2 kinase activity (32). Full activation of PYK2 requires phosphorylation at the autophosphorylation site Tyr-402 (33). We therefore asked whether there was increased PYK2 phosphorylation in CFTR−/− airway smooth muscle cells. Protein lysates from WT, CFTR−/−, and NVP-TAE684–pretreated CFTR−/− airway smooth muscle cells were collected, and we used an ELISA-based antibody array to quantify total abundance and Tyr-402 phosphorylation status of PYK2. PYK2 phosphorylation was increased in CFTR−/− airway smooth muscle cells, and NVP-TAE684 pretreatment reduced PYK2 phosphorylation to WT levels (Figure 7A). These data were confirmed using Western blot analysis of WT and CFTR−/− airway smooth muscle cell lysates (Supplemental Figure 2).

Simultaneously, the downstream targets of PYK2, the signaling proteins PI3K and MAPK, were found to have increased phosphorylation in CFTR−/− compared with WT airway smooth muscle cells (Figure 7, B and C). PYK2 inhibition reduced PI3K and MAPK phosphorylation to levels, such that they were comparable to those of WT airway smooth muscle cells. These results suggest that NVP-TAE684 works via inhibition of PYK2 autophosphorylation and subsequent inhibition of the PYK2 signaling cascade, including activation of PI3K and MAPK signaling pathways.

Finally, to investigate the effects of PYK2 inhibition on CFTR−/− airway smooth muscle contraction, we measured tracheal muscle force generation. Previously, we described an airway hyperresponsive phenotype in newborn CFTR−/− piglets in the absence of inflammation and infection. To determine if PYK2 inhibition could reverse this phenotype, we used WT and CFTR−/− airway smooth muscle. In order to achieve comparable resting tone, WT and CFTR−/− airway smooth muscles were pretreated with isoproterenol. Acetylcholine caused greater force production in CFTR−/− tracheal smooth muscle compared with WT muscle (Figure 7D). This is consistent with previously reported findings of increased contractile tone in CFTR−/− airway smooth muscle (11). Pretreatment with NVP-TAE684 decreased force generation in CFTR−/− airway smooth muscle strips (Figure 7D). There were no significant differences in the EC50 of acetylcholine among the three groups. These results suggest that PYK2 inhibition can partially rescue the contractile phenotype induced by CFTR loss, in part, through inhibition of airway smooth muscle PYK2.
Recent studies have shown that calcium can activate PYK2 by causing autophosphorylation at Tyr-402, a site that is required for kinase activity (33). Active PYK2 in vascular smooth muscle has been shown to mediate Ca²⁺/calmodulin-dependent PYK2 homodimer formation and transphosphorylation (35) and inhibit ROCK1/2, which is required for kinase activity (33). Active PYK2 in vascular smooth muscle has been shown to mediate Ca²⁺/calmodulin-dependent PYK2 homodimer formation and transphosphorylation (35) and inhibit ROCK1/2, which is required for kinase activity (33). Active PYK2 in vascular smooth muscle has been shown to mediate Ca²⁺/calmodulin-dependent PYK2 homodimer formation and transphosphorylation (35) and inhibit ROCK1/2, which is required for kinase activity (33).

Interestingly, in ovalbumin-sensitized mice, PYK2 inhibition decreased inflammation and reduced airway hyperresponsiveness (34). However, that study did not explore the direct effects of PYK2 inhibition on smooth muscle function. CFTR loss in airway smooth muscle on mRNA expression signatures. As predicted, we observed transcriptional changes reflective of smooth muscle contraction biology, including transcriptional expression changes in ROCK1, MYLK, CALM6, and MYL6. An unexpected finding was that CFTR loss induced a large number of transcriptional changes outside of the canonical contractile machinery pathways. In total, there were 604 genes altered in CFTR−/− airway smooth muscle. These changes represented many different biological processes and functional pathways but had common associations with smooth muscle activity, cellular signaling, and cell growth.

Connectivity mapping and subsequent phosphorylation studies demonstrated that PYK2 had increased phosphorylation in CFTR−/− airway smooth muscle. PYK2 inhibition reduced airway smooth muscle contraction. Interestingly, in ovalbumin-sensitized mice, PYK2 inhibition decreased inflammation and reduced airway hyperresponsiveness (34). However, that study did not explore the direct effects of PYK2 inhibition on smooth muscle, but instead focused on the inflammatory response. Thus, those observed effects could have been related to decreased airway inflammation, independent of a direct effect on airway smooth muscle function. These data, together, with our findings suggest that, in diseases of airway narrowing and inflammation, PYK2 may have a direct effect on smooth muscle contraction while also decreasing airway inflammation.

Several mechanisms could account for PYK2’s effect on airway smooth muscle contractility. Previous studies have shown that calcium can activate PYK2 by causing autophosphorylation at Tyr-402, a site that is required for kinase activity (33). Active PYK2 in vascular smooth muscle has been shown to mediate Ca²⁺/calmodulin-dependent PYK2 homodimer formation and transphosphorylation (35) and inhibit MYPT1 through a RhoA/ROCK pathway (36). Moreover, PYK2 inhibition has been shown to prevent stretch-induced activation of Akt and ERK1/2 (37). Given the observed changes in PI3K and MAPK signaling pathways following PYK2 inhibition in airway smooth muscle cells, it is likely that PYK2 is acting, through similar mechanisms, to reduce contractility, as in vascular smooth muscle.

Our results support a proposed model in which CFTR loss in airway smooth muscle dysregulates intracellular calcium, which, in turn, activates the contractile apparatus, including MLC and calcium sensitization...
Figure 8. Model of airway smooth muscle alterations in CF. Loss of CFTR leads to alterations in intracellular calcium handling. The increase in Ca2+ can lead to direct changes to the contractile apparatus or lead to PYK2 activation and autophosphorylation. Phosphorylated PYK2 can promote changes in the cytoskeleton and activate PI3K and MAPK signaling pathways. These pathways can lead to changes in proliferation, cell growth, and migration. In addition, activation of transcription factors could lead to gene expression changes.

In summary, with an integrative approach, combining genetically modified pigs, next-generation transcriptional sequencing, molecular studies, and physiological assays, we have demonstrated that increased phosphorylation of a airway smooth muscle protein, PYK2, contributes to abnormal airway smooth muscle function in CF. This understanding will facilitate further insights into the pathophysiology of airway hyperresponsiveness and therapeutic options for airway smooth muscle dysfunction.

Methods

Animals. We previously reported the production of CFTR+/+ and CFTR−/− pigs (49, 50). Animals were purchased from Exemplar Genetics, and we used WT (CFTR+/+) and CF (CFTR−/−) pigs.

Tissue collection and preservation for laser-capture microdissection. Immediately after euthanasia, tracheas were placed into a plastic cryomold cassette and embedded in optimal cutting temperature compound. A total of 4 tissue samples from each genotype were collected. The samples were placed on dry ice until frozen and stored at −80°C until microdissection.

Laser-capture microdissection. Serial 8-μm frozen sections were cut at −20°C using RNAsafe-free blades and mounted on Arcturus PEN membrane frame slides. These slides were then fixed in serial nuclease-free ethanol washes ranging from 95% to 50% ethanol; rehydrated in nuclease-free water for 60 seconds; and dehydrated by sequential immersion into 95%, 75%, 50%, and 100% ethanol for 30 seconds each. The ethanol dehydrated slide was washed in xylene for 5 minutes, and then excess xylene was blotted from the slide. Laser-capture microdissection was performed using a Leica LMD7000 Laser Capture Microdissection System (Leica Microsystems). In the newborn pig trachea, the airway smooth muscle layer is easily identified as a uniform layer of cells that runs transverse below the epithelial layer and immediately above the cartilage rings. Using laser-capture microdissection, we were able to capture this layer of cells in its entirety. Tissue was captured from the slides using RNAsafe-free tubes. Approximately 1,000 cells were captured from the...
airway smooth muscle layer in each slide over approximately 10 minutes, incubated at 42°C for 30 minutes in 50 μl extraction buffer, and stored at –80°C. The microdissected cells from the same donor slides were pooled and used for the RNA extraction.

RNA isolation. Total RNA was isolated from microdissected airway smooth muscle tissue using a PicoPure Kit (Life Technologies) according to the manufacturer’s instructions. Genomic DNA was digested using DNase I (Qiagen). RNA samples were then quantified using fluorometry (Qubit 2.0 fluorometer; Life Technologies), and RNA quality was assessed using an Agilent BioAnalyzer 2100 (Agilent Technologies). Only samples with RNA integrity numbers >7 were used.

To validate our RNA-seq findings, qPCR was performed using Takara Bio SYBR Green Master Mix with ROX (Clontech). Primer sequences were as follows: CTR forward: 5′-CTGGAGCTTCTCAGAGGTA-AAAT-3′; CTR reverse: 5′-AGTTGGAACGCTTTGATGACACTCC-3′; ROCK1 forward: 5′-GGGAGGTGAGATTAGGGCGA-3′; ROCK1 reverse: 5′-CAACTGGTGCACAGTGTCT-3′; CALM3 forward: 5′-CCGTGTGTTTTGACAAGGATGG-3′; CALM3 reverse: 5′-TCATCCACTTCTCTGCGGTT-3′; MYLK forward: 5′-GGGACTCAGTGGACAAGACG-3′; MYLK reverse: 5′-CCTTGGGCTTCCCTCAGGTTTTC-3′; ACTA2 forward: 5′-GGGGAGAAGATGACCCAGATTAT-3′; ACTA2 reverse: 5′-CAGTCGTACGTCCAGAGGC-3′; MYL6 forward: 5′-TATGAAAGCCTTTTGAGCCATATC-3′; MYL6 reverse: 5′-TTCAGGGCTCACACACCCTG-3′; and RPL13 forward: 5′-TACCGCTCCACAGGTCTC-3′; RPL13 reverse: 5′-CACGTTCGTATGGGCATGA-3′. The cDNA was amplified in the 7900HT Fast Real-Time PCR System (Applied Biosystems). Relative mRNA expression was calculated using the ΔΔCt method (51).

Individual data were normalized against the housekeeping gene ribosomal protein L13. Results are presented as fold change in expression over the average of the WT controls.

Library preparation and sequencing. Library preparation and sequencing were conducted in the Iowa Institute of Human Genomics core facility at the University of Iowa. Briefly, an Illumina TruSeq Stranded Total RNA kit (Illumina RS-122-2201) was used to isolate rRNA-depleted RNA. The samples were then reverse transcribed to create cDNA. The cDNA was fragmented, blunt-ended, and ligated to indexed adapters. Following quantification of the cDNA generated for the library, the samples were clustered and loaded equally over two lanes on an Illumina HiSeq 2000 Sequencing system (Illumina Inc.), which generated on average >20 million paired reads of 100 bp.

Data records. FASTQ files containing the raw RNA-seq reads were deposited in the National Center for Biotechnology Information (NCBI) Sequence Reads Archive (SRP108562), with an accompanying Bio-Project ID (PRJNA388808).

Filtering and mapping of sequence reads. Quality control, trimming, and mapping were performed with the Galaxy platform (52). Initially, the FastQC tool was applied to the raw sequence data followed by FastQ Trimmer (52). As a result, 15 bp were trimmed from the 5′ end and 10 bp from the 3′ end of each raw sequence read. Sequences containing 75 bp and a Phred quality score of more than 20 were used in the gene expression analysis. Using the Bowtie short read aligner with no more than two mismatches (53), the filtered sequences were mapped onto the pig genome *Sus scrofa* 10.2., obtained from the NCBI database. Approximately 82% of the reads were mappable to genome and 76%–77% reads were paired. The ensemble annotation (iGenomes, Illumina) of the *S. scrofa* genome, along with the number of reads mapped within each annotated transcript, were used to calculate the level of transcription for each gene. The Cufflinks tool was used to estimate the relative abundances of the transcript reads for each gene (54). For comparison of gene expression between WT and CF samples, the read counts were normalized based on the number of fragments per kilobase of coding sequence per million mapped reads (FPKM).

Differential gene expression. The differential gene expression between WT and CF was assessed using the CuffDiff tool (54). In brief, the total read count for each gene was calculated by combining the expression data from all replicates into either WT or CF groups and testing for differentially expressed transcripts present in all 4 replicates within the group. FPKM values were expressed in log2 (FPKM) to allow for statistical comparisons. As a result, log2 fold change in abundance of each transcript was obtained by log2 (FPKM [CF]/FPKM [WT]). Cuffdiff calculated the abundance of the transcripts listed and tested concurrently for differential expression. Q values of less than 0.05 and fold change ± 2 in the Cuffdiff output were selected as the criteria for significant difference. Significant differential expression was determined in genes with Q < 0.05 and fold change ± 2.

Functional GO and pathway analysis. Biological functions and interactions of the genes and proteins differentially expressed were determined using MetaCore (Thomson Reuters), IPA (Qiagen), and the Database for Annotation Visualization and Integrated Discovery (DAVID) (55). The MetaCore and IPA pathways were
used for pathway and network analysis, and the DAVID knowledge base was used for functional clustering. The Cytoscape software (http://www.cytoscape.org/), including a ClueGo plug-in, was used to visualize GO terms and pathways in functionally organized networks. This allows for examination of the relations between the biological terms and groups, we used the following settings: the ε statistics score threshold was set to 0.3. Other analysis parameters included GO level intervals of 3–15, and the number of associated proteins was 9. All functional GO and pathways analyses were performed using annotated genes that also had human orthologs recognized in the respective databases.

Airway smooth muscle tissue and cells. Tracheas from newborn non-CF (CFTR+/+ and CFTR+/−) or CFTR−/− pigs were excised and placed in modified Krebs Solution containing 120.8 mM NaCl, 5.9 mM KCl, 0.2 mM CaCl2, 1.2 mM MgCl2, 1.2 mM NaH2PO4, 2 mM NaHCO3, 11 mM d-glucose, and 10 mM HEPES, pH 7.4. The tracheal muscle was dissected by removing the cartilage and epithelial layers. For force measurements, tracheal smooth muscle strips were hung in a tissue perfusion system (Radnoti LLC). For cell isolation, the remaining medial layers were minced and digested using a papain dissociation system (Worthington) based upon previous studies (56). The minced smooth muscle was suspended in Earle’s balanced salt solution containing papain (10 U/ml) and DNase (1,000 U/ml) and incubated at 37°C for 1 hour. Collagenase (0.5 mg/ml) was added, and after 1 hour the mixture triturated. Primary cells were grown to confluence in a 1:1 mixture of DMEM and Ham’s F12 on fibronectin-coated 6-well plates. All solutions contained 100 U/ml penicillin and 0.1 mg/ml streptomycin. Primary culture cells were allowed to grow for 8–10 days until confluent. Positive immunostaining with the polyclonal anti-α-smooth muscle actin antibody (clone 1A4, abcam) confirmed the presence of airway smooth muscle cells and lack of staining with the monoclonal anti-fibroblast surface protein antibody (clone 1B10, abcam) excluded the presence of fibroblasts.

Protein phosphorylation profiling of airway smooth muscle. The Phospho Explorer antibody microarray (Full Moon BioSystems) contains 1,318 antibodies in duplicate. The assay was performed using cultured passage 1–2 WT and CF airway smooth muscle cells. Proteins from both genotypes were collected, biotinylated, and incubated with the antibody array as per the manufacturer’s instructions. Slides were analyzed using an Axon 4000B microarray scanner (Molecular Devices). Individual antibody matrix dots underwent global mean normalization to housekeeping signal intensity with subsequent normalization of CF to WT signal intensities to derive relative expression values. Positive values correspond to highly expressed proteins or phosphorylation sites with increased phosphorylation, respectively, in CFTR−/− airway smooth muscle. Negative values refer to under expressed proteins or phosphorylation sites with decreased phosphorylation. For quantified ELISA studies, select proteins (PYK2, the p38 regulatory unit of PI3K, and the p85 regulatory unit of MAPK) were assayed in donor pools of 4, on 3 separate occasions, for a total of 12 donors.

LINCS analysis. To identify chemical modulators that negatively correlated with CFTR knockout in airway smooth muscle, we queried LINCS, supported by the NIH Common Fund (57). LINCS represents a database of gene expression data collected from numerous human cell treated with chemical compounds. This novel mRNA expression profiling technique was used to compare the CFTR−/− airway smooth muscle transcriptional signature across multiple cell and perturbation types in the database. In total, the signature was queried against 15 human cell lines responding to 16,425 chemical reagents in the LINCS data set. A connectivity score was assigned to each of the expression profiles from the perturbations based on a weighted Kolmogorov-Smirnov statistic.

LINCS compound associations with disease states. To define associations of LINCS compounds with diseases, a search for the terms, including the compound name as identified by LINCS, and a disease (asthma, chronic kidney disease, and diabetes) was performed. PubMed was used to search for associations with the inclusion criteria limited to randomized controlled trials, cohort studies, case-control studies, and any reviews with an implicit or an explicit mention of the queried compound and either asthma, chronic kidney disease, and/or diabetes. If an article was found using these criteria the compound was indicated as an association. The top 60 compounds were used for analysis and compared to 60 control compounds that LINCS predicted to have no association with the CF signature (null group, enrichment score = 0). For differences between the top 60 compounds and the null group of compounds, the odds of the top 60 compounds being associated with a disease state were compared with those of the null compound group by odds ratio; 95% confidence intervals (CI) were computed along with P values for the null hypothesis that the odds ratio is 1.
Measurement of airway smooth muscle force generation. Freshly harvested tracheal rings were bubbled in Ringer’s solution overnight in the presence of either 10 μM NVP-TAE684 (Selleck Chemical) or DMSO vehicle. The next day, airway smooth muscle strips (~1.5 mm × ~3 mm) from the trachealis muscle were mounted along the trachealis muscle orientation in individual muscle baths (Radnoti Glass) and force generation was quantified as previously described (11). The smooth muscle force from NVP-TAE684– or DMSO-pretreated strips was determined by obtaining concentration-response curves to acetylcholine (10⁻⁹ to 10⁻² M, Sigma-Aldrich) in the muscle bath.

MLC protein extraction and Western blot analysis. WT airway smooth muscle strips pretreated with either NVP-TAE684 or DMSO were hung at reference length in an organ perfusion bath and allowed to equilibrate for 1 hour in Krebs buffer. Following equilibration, strips were treated with an EC₅₀ dose of acetylcholine (~10 μM). Acetone prechilled on dry ice was used to freeze the tissue while hanging. Phosphorylated and nonphosphorylated MLC levels were then determined as previously described (11).

Precision-cut lung slice preparation. Precision-cut lung slices were isolated as previously described from WT newborn pigs (11). For luminal diameter changes in response to methacholine, lung slices were pretreated overnight with either NVP-TAE684 (10 μM, Selleck Chemical) or DMSO (0.1% final concentration) and then mounted in the perfusion chamber and perfused with HBSS for 5 minutes. Lung slices were perfused with increasing concentrations of methacholine (0–10 μM, Sigma-Aldrich) to induce airway contraction in the lung slice. For all precision-cut lung slice experiments, maximal airway contraction was analyzed for each dose by lumen area measurements performed with ImageJ (NIH). Paired comparisons were performed using sequentially cut lung slices pretreated with either NVP-TAE684 or DMSO.

Measurement of in vivo airway resistance. WT mice (~3 month, ~20 g) were pretreated with either the PYK2 inhibitor NVP-TAE684 (100 μl of 5 mM, 1% DMSO) or vehicle (1% DMSO) via intraperitoneal injections daily for 3 days prior to and including the day of pulmonary measurements. Mice were anesthetized with ketamine and xylazine. Following tracheotomy, an 18-gauge cannula was inserted and securely tied with 4.0 braided silk. The animals were then paralyzed with rocuronium bromide and mechanically ventilated with ketamine and xylazine. Following tracheotomy, an 18-gauge cannula was inserted and securely tied with 4.0 braided silk. The animals were then paralyzed with rocuronium bromide and mechanically ventilated with a computer-controlled small-animal ventilator (FlexiVent, SCIREQ) using a tidal volume of 8 ml/kg at a rate of 180 breaths per minute and PEEP of 3.5 cm H₂O. Pulmonary resistance was measured by the computer-controlled ventilator by interrupting ventilation and imposing broadband low-frequency oscillatory waveforms and then resuming ventilation. After measuring baseline resistance, mice underwent airway challenge with normal saline and increasing dosages of methacholine by aerosol challenge of 20 μl of methacholine solutions ranging from 0.3 to 100 mg/ml. Measurements of resistance were obtained for each dose at 10-second intervals for 2 minutes, and then the next methacholine dose was administered.

PYK2 Western blot analysis. Cells were lysed with modified RIPA lysis buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 0.3% sodium deoxycholate, 0.1% NP-40, 10% glycerol, 1.5 mM MgCl₂, 1 mM EDTA, 0.2 mM EGTA, 20 mM NaF, 25 μM ZnCl₂, 1 mM NaVO₄, 1 mM PMSF, complete protease inhibitor tablet [Roche] and Phosphatase Inhibitor Cocktail [Thermo Fischer Scientific]). Immunoprecipitation was carried out at 4°C by incubating cell lysates overnight with rabbit anti-PYK2 antibody (3292, Cell Signaling Technology), followed by an incubation for 1 hour with protein A–Dynabeads (Life Technologies). Immunoprecipitates were washed 3 times in lysis buffer without protease inhibitors. The beads were resuspended in SDS-PAGE sample buffer, boiled for 5 minutes, and resolved by SDS-PAGE. Western blotting was performed with rabbit anti-PYK2 and rabbit anti-Phospho-Pyk2 (Tyr402) antibody (Cell Signaling Technology, 3291), using IRdye secondary antibodies on an Odyssey imaging system (LI-COR Biosciences).

Protein phosphorylation profiling of airway smooth muscle. A custom antibody array (Full Moon Biosystems) was used for select proteins (PYK2, the p38 regulatory unit of PI3K, and the p85 regulatory unit of MAPK). The assay was performed using cultured passage of 1–2 WT and CF airway smooth muscle cells. Proteins from both genotypes were collected, biotinylated, and incubated with the antibody array as per the manufacturer’s instructions. A total of 4 donors were pooled onto 1 slide, and a minimum of 3 slides were run for statistical analysis (n = 3 slides, representing 12 animal donors). Slides were analyzed using an Axon 4000B microarray scanner (GenePix). Individual antibody matrix dots underwent global mean normalization to housekeeping signal intensity with subsequent normalization of CFTR−/− to WT signal intensities to derive relative expression values. Positive values correspond to highly expressed proteins or phosphorylation sites with increased phosphorylation, respectively, in CFTR−/− airway smooth muscle. Negative values refer to underexpressed proteins or phosphorylation sites with decreased phosphorylation.
In vitro PYK2 kinase assay. The specific PYK2 kinase activity in the presence and absence of NVP-TAE684 was measured using a Universal Kinase Activity Kit (R&D Systems). The assay measures the inorganic phosphate that is released from ADP via substrate phosphorylation by PYK2. Different concentrations of recombinant human PYK2 (0.5 and 2 μg/ml, R&D Systems) were incubated in the presence of 200 μM ATP and 1 μM concentrations of a protein tyrosine kinase substrate (poly Glu,Tyr 4:1, Sigma-Aldrich) for 10 minutes at room temperature. Inorganic phosphate was used for standard curve determination, and ADP was used as a positive control. The reaction was terminated by application of malachite green. The optical density was measured at 620 nm.

Statistics. Unless otherwise noted, results are expressed as mean ± SEM or mean only. For analyses that compared two groups, we used a paired or unpaired 2-tailed Student’s *t* test. For odds ratio calculations, categorical variables were analyzed by χ². For time-course and drug-dose curves, the analysis used a 4-parameter logistic regression algorithm (sigmoidal curve fit) to fit. For multiple comparisons, we used a 1-way ANOVA, followed by Dunnett’s test. We considered *P* < 0.05 statistically significant.

Study approval. All animal studies were reviewed and approved by the University of Iowa Animal Care and Use Committee.

Author contributions
DPC and DAS conceived and designed research, prepared figures, and drafted the manuscript; DPC, RJA, KZ, MRS, NDG, and DAS performed experiments; DPC, RJA, KZ, BD, DKM, KFA, and DAS analyzed data; DPC, KZ, DKM, and DAS interpreted results of experiments; and DPC, RJA, KZ, BD, MRS, NDG, DKM, KFA, and DAS edited and revised the manuscript and approved the final version.

Acknowledgments
We thank M. Abou Alaiwa, P. McCray, L. Ostedgaard, L. Powers, L. Reznikov, S. Roach, T. Ruggle, P. Taft, K. Webber, M. Welsh, J. Zabner, and the University of Iowa Office of Animal Resources for excellent assistance, advice, and discussions. This work was supported by an Early Excellence Award from the American Asthma Foundation (to DAS), the NIH (HL091842, HL051670, HL117744, T32 GM07337, T32 HL07638), and the Cystic Fibrosis Foundation (Research Development Program). This work utilized the Leica LMD7000 Laser Capture Microdissection System in the University of Iowa Central Microscopy Facilities, which was purchased with funding from NIH Shared Instrument Grant S10 OD016316.

Address correspondence to: David A. Stoltz, Lung Biology and Cystic Fibrosis Research Center, Pappajohn Biomedical Institute, University of Iowa, 6322 PBDB, 169 Newton Road, Iowa City, Iowa 52242, USA. Phone: 319.384.1107; Email: david-stoltz@uiowa.edu.

