1	Supplemental Materials
2	
3	Title: Epigenetic mechanisms underlying maternal diabetes-associated risk of congenital heart disease
4	
5	Authors: Madhumita Basu, ¹ Jun-Yi Zhu, ² Stephanie LaHaye ^{1,3} , Uddalak Majumdar ¹ , Kai Jiao ⁴ , Zhe
6	Han, ² and Vidu Garg ^{1,3,5}
7	
8	Affiliations:
9	¹ Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus,
10	OH 43205
11	² Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010,
12	USA
13	³ Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
14	⁴ Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
15	⁵ Departments of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
16	
17	
18	
10	
19	
20	
21	

22 Supplemental Figure and Figure Legends:

Supplemental Figure 1: Gene-environment interaction between MDM and Notch1. (A-D) 23 Representative images of wildtype (WT) and *Notch1*^{+/-} E13.5 embryos from non-diabetic and diabetic 24 mothers show no apparent growth retardation. (E, F) Three-dimensional reconstruction of E13.5 non-25 26 diabetic and diabetic WT heart (N=1 per group) using AMIRAv5.5 software showed the perimembranous VSD (*). AVC, Atrioventricular cushion (green); IVS, interventricular septum (red). 27 (G) Breeding scheme showing non-diabetic $Notch1^{+/-}$ males crossed with diabetic (hyperglycemic, 28 blood glucose >200mg/dl) WT females to test that resultant CHD phenotype is independent of maternal 29 genetic background. (H-K) Representative histologic sections showing location of VSD (*) in E13.5 30 hearts (WT and $Notch1^{+/-}$) exposed to maternal diabetes as compared to non-diabetic controls. Scale 31 32 bars: (A-D) 1 mm and (H-K) 200 µm. RA, right atrium, LA, left atrium; RV, right ventricle; LV, left ventricle. 33

34

Supplemental Figure 2: Maternal hyperglycemic stress results in spectrum of birth defects in 35 36 developing embryos. (B-D) General appearance of E13.5 embryos exposed to increasing level of 37 maternal glucose (N=3, range of maternal blood glucose (mg/dl) = 389-787 mg/dl at time of embryo collection) compared to non-diabetic wildtype (WT) control (A). Yellow arrowheads indicate 38 39 craniofacial and neural tube defects (C, D). (E-L) Representative hematoxylin & eosin images of E13.5 heart sections demonstrate improper septation of outflow tract (I, K) compared to E and G, enlarged AV 40 cushion (H, L, black arrowheads), septal defects (J, asterisk and black arrow) and myocardial wall 41 42 thinning (H, J, L) compared to control embryos (E, F). Scale bars: (A-D) 1 mm and (E-L) 200 µm. RA,

right atrium, LA, left atrium; RV, right ventricle; LV, left ventricle; Ao, Aorta; PT, Pulmonary trunk;
CT, common trunk; AVC, Atrioventricular cushion; IVS, Intervetricular septum.

45

Supplemental Figure 3: Chromatin accessibility at *Notch1* and its downstream target loci. (A)
Integrative Genome Viewer (IGV) tracks showing ATAC-seq signals for four open regions (R1-R4) at *Notch1* loci in NG (red) and HG (blue). (B-E) Chromatin accessibility at the proximal promoter regions
of *Hey2*, *EfnB2*, *Nrg1* and *Jarid2* loci remain unaltered in HG compared in NG. Statistically significant
changes in chromatin accessibility were found at the enhancer, downstream and intronic regions of *Hey2*, *Efnb2* and *Nrg1* respectively (peaks shown with asterisks).

52

Supplemental Figure 4: Specificity of the probes and quantification of DAR-4M AM⁺ and DHE⁺ 53 cells. AVM cells treated with (A, D) DMSO, (B) 250µM DetaNONOate and (E) 300µM H₂O₂ served as 54 55 negative and positive controls for DAR-4M AM and DHE staining, respectively, indicating the specificity of the dyes. (C, F) Quantification of mean fluorescence intensity of DAR4M⁺ and DHE⁺ cells 56 57 in NG and HG (N>4). Data presented as mean±SEM; *, p-value <0.05 by 2-tailed Student's t test. Scale 58 bars: 50µm (A, B) and 100µm (D, E). (G-I) and (J-L) Endothelial cell-specific NO production was 59 measured using DAR4M AM (red) staining in E13.5 non-diabetic and diabetes exposed embryos (N=1 per group) co-stained with PECAM (green) and nuclei stained with DAPI (blue). Scale bars: 100µm (G, 60 61 I, J, L) and 50µm (H, K).

63 Supplemental Figure 5: Inability of N-acetyl cysteine mediated rescue of VSD phenotype in vivo: (A) Breeding scheme showing non-diabetic wildtype (WT) males crossed with non-diabetic (blood 64 glucose = 165-189 mg/dl at time of embryo harvest) and diabetic (blood glucose=229-389 mg/dl at time 65 of embryo harvest) WT females and subset of these females were treated with N-acetyl cysteine (NAC). 66 (B) No significant rescue was observed in the incidence of VSD among diabetic groups with (31%) or 67 without (37%) treatment of NAC. No VSD was observed in non-diabetic control groups (0%). (G-J) 68 69 Histologic sections showing location of ventricular septal defects (VSD, *) in E13.5 hearts from two representative embryos exposed to maternal diabetes with or without NAC treatment. 70 Non-diabetic 71 wildtype (WT) control embryos are shown with normal ventricular septation. RA, right atrium, LA, left 72 atrium; RV, right ventricle; LV, left ventricle. Scale bar: 200 µm.

73

74 Supplemental Figure 6: N-acetyl cysteine mediated rescue in vitro. AVM cells maintained in NG and HG were stained for (A-D) ROS generation using H₂DCFDA (green) and (E-H) NO detected using 75 76 DAR4M AM (red) after treatment with 5mM NAC and compared to untreated controls. (I-L) and (M-P) 77 Immunofluorescent staining demonstrate JARID2 (green) and active NOTCH1 (N1ICD, red) expression 78 in presence and absence of NAC. Propidium iodide (red, A-D; I-L) and DAPI (blue, E-H; M-P) stain the 79 nuclei. Scale bar: 50µm. (Q-T) Quantification of mean fluorescent intensity of DCFDA, DAR4M, JARID2 and N1ICD staining by ImageJ. N>3, Data presented as mean±SEM; *, p-value <0.05 by 2-80 tailed Student's t test. 81

82

83

Supplemental Figure 7: RNAi transgene rescues shorter lifespan and cardiac phenotype in Drosophila maternal diabetic model. Survival curves for adult progenies those overexpressing heart specific *Jarid2*, *Numb*, *Notch* RNAi and *Jarid2* RNAi transgenes are shown. Color-coding identifies exposure to maternal diabetes and presence of transgenes.

89

90 Supplemental Figure 8: In vitro ATAC-seq highlights top GO enriched terms altered in hyperglycemic stress. (A) Gene ontology analysis performed on genes associated with peaks in 91 92 "promoter" regions, with p-value <0.05 and >1.5 fold change, highlights the 25 most significant GO terms. Green: Cellular Architecture, Blue: Chromatin Regulation, Pink: Development, Grey: Other. (B) 93 94 Circle plot generated to highlight the 12 GO terms that fall within Chromatin Regulation (Blue), 95 Development (Pink), or Cellular Architecture (Green) classifications (C). Within the circle plot, the colored dots represent gene associated peaks that are more open in high glucose (red) or more open in 96 normal glucose (blue) within each GO term. The size of the rectangle in the inner circle represents the p-97 98 value, with larger rectangles equating to lower p-values. The color of the rectangle represents the z-99 score, blue and red representing low and high z-scores respectively. The z-score used in this analysis refers to the following equation: z-score = (# of peaks up - # of peaks down)/ (sqrt of total count), 100 101 allowing for an inference in the overall change of the biological function.

Supplemental Figure 9: Hyperglycemia reduces cardiomyocytes proliferation at E13.5 embryos.
(A-H) Immunofluorescent staining using phospho-histone H3 (PHH3, Ser10, red) demonstrates
decreased cardiomyocyte proliferation in the interventricular septum (IVS) of the diabetic E13.5 WT
embryonic hearts compared to non-diabetic controls (N=3 each group). cTnT staining (green) is shown
to label cardiomyocytes and corresponding nucleus stained with DAPI (blue). Scale bar (A-H): 20 μm.

- 107 (I) Quantitation of PHH3⁺ cardiomyocytes demonstrated downregulation of cardiomyocyte proliferation
- 108 between two groups. N=5. Data presented as mean±SEM; *, p-value <0.05 by 2-tailed Student's *t* test.
- 109 (J) Transcript expression of *CyclinD1* is reduced in diabetic WT E13.5 embryonic hearts with respect to
- 110 non-diabetic controls (N=6 whole hearts pooled together/ group) as measured with qRT-PCR. Data
- shown as average \pm SD; *, p-value <0.05 by 2-tailed Student's *t* test.
- 112

Supplemental Table 1: Incidence of VSD in E13.5 WT and *Notch1^{+/-}* embryos derived from 114

Parental Genotype	Embryo	Embryos with	Fisher Exact p-value
	Genotype	VSD (%)	(non-diabetic vs. diabetic)
Non-diabetic <i>Notch1</i> ^{+/-} (male)	Notch1 ^{+/-}	8/9 (88%)	
			0.035*
Diabetic WT (female)	WT	2/7 (28.7%)	-

Supplemental Table 2: Full annotated ATAC-seq features in AVM cells treated with NG and HG

117

Supplemental Table 3: Motif enrichment analysis of NG ATAC-seq dataset with HG set as 118

background identified overrepresented known and de novo motifs respectively. 119

120	Know	'n		d	e novo	
	Consensus	Motif	p-value	Consensus	Motif	p-value
121	SCCCCCCCCC	* SP1	1e-843	JOSE ATTOGE	NFY	1e-1497
	ASCCAATSSS	NFY	1e-622	920000000	* SP1	1e-1192
	*GCCEGICSC	* KLF5	1e-485	SSCGGAASES	*ELK1	1e-620
122	%GTGGGCCGGG	*KLF14	1e-419	SICCCCATCCCC	NRF1	1e-605
	ACTACA STCCCA SALGC	GFY	1e-369	CORFEAN	NFY	1e-403
123 124	SCACSCCACE	* KLF9	1e-337	CGTCACGT	ARNT1	1e-281
	SATGASTCA35	ATF3	1e-288	ACTACAASTCCC	GFY	1e-277
	XETGASTCAL	BATF	1e-286	CCGGGCGCCAGA	E2F3	1e-263
	QCCACACCCA	* KLF4	1e-269	AATCTCGCGA	GFX	1e-259
	SECTORSTORES	FRA1	1e-266	CGCCATCTTT	YY1	1e-241
	<u><u></u>ATGASTCAIS</u>	AP-1	1e-262	GCTGTGCGCACG	MTF1	1e-209
	SOTGASTCASTS	FOSL2	1e-221	TGCCGCGGGC	TCFAP2B	1e-169

- 125 Supplemental Table 4: Known and de novo transcription factor binding motifs enriched in NG
- 126 compared to HG
- 127 Supplemental Table 5: TFBS profile for Nos3_R1
- 128 Supplemental Table 6: TFBS profile for Nos3_R2
- 129 Supplemental Table 7: TFBS profile for Nos3_R3
- 130 Supplemental Table 8: Incidence of VSD in E13.5 embryos with and without exposure to maternal
- 131 diabetes and NAC treatment.

Embryonic	Maternal	Embryos with	p-value	p-value	
Genotype	Environment	VSD (%)	(non-diabetic	(diabetic vs.	
			vs. diabetic)	diabetic +NAC)	
WT	Non-diabetic	0/5 (0%)	NS		
	Non-diabetic+ NAC	0/9 (0%)	_		
WT	Diabetic	3/8 (37%)	0.036*	NS	
	Diabetic + NAC	5/16 (31%)	0.044*	_	

132 * indicates statistically significant 2-tailed p value<0.05; WT= wildtype, NS=non-significant

- 133 Supplemental Table 9: TFBS profile for Jarid2_R1
- 134 Supplemental Table 10: TFBS profile for Jarid2_R2
- 135 Supplemental Table 11: TFBS profile for Jarid2_R3

- 136 Supplemental Table 12: TFBS profile for Notch1_R1
- 137 Supplemental Table 13: TFBS profile for Notch1_R2
- 138 Supplemental Table 14: TFBS profile for Notch1_R3
- 139 Supplemental Table 15: TFBS profile for Notch1_R4
- 140 Supplemental Table 16: Differential peaks within 1.5kb upstream and downstream of TSS, P-
- 141 value<0.05 and >1.5fold change between NG and HG
- 142 Supplemental Table 17: Gene Ontology enriched terms
- 143 Supplemental Table 18: ATAC-seq index primer sequences:

Index Primers	Sequence 5'-3'
Ad1_noMx	AATGATACGGCGACCACCGAGATCTACACTCGTCGGCAGCGTCAGATGTG
Ad2.1_TAAGGCGA	CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTCTCGTGGGCTCGGAGATGT
Ad2.2_CGTACTAG	CAAGCAGAAGACGGCATACGAGATCTAGTACGGTCTCGTGGGCTCGGAGATGT
Ad2.3_AGGCAGAA	CAAGCAGAAGACGGCATACGAGATTTCTGCCTGTCTCGTGGGCTCGGAGATGT
Ad2.4_TCCTGAGC	CAAGCAGAAGACGGCATACGAGATGCTCAGGAGTCTCGTGGGCTCGGAGATGT
Ad2.5_GGACTCCT	CAAGCAGAAGACGGCATACGAGATAGGAGTCCGTCTCGTGGGCTCGGAGATGT
Ad2.6_TAGGCATG	CAAGCAGAAGACGGCATACGAGATCATGCCTAGTCTCGTGGGCTCGGAGATGT

146 Supplemental Table 19: Oligonucleotide sequences for gene expression

Gene name	Primer Name	Sequence 5'-3'
18S	mus_18S F.P	ACGACCCATTCGAACGTCTGC
	mus_18S R.P	GGACTCATTCCAATTACAGGG
Gapdh	mus_Gapdh F.P	GAAGGGCTCATGACCACAGT
	mus_Gapdh R.P	GATGCAGGGATGATGTTCTGG
Notch1	mus_Notch1 F.P	CCAGGAAAGAGGGCATCAGA
	mus_Notch1 R.P	ACACTTCCAGCGTCTTTGGG
Hey1	mus_Hey1 F.P	CCAGACTACAGCTCCTCAGATA
	mus_Hey1 R.P	CGCCGAACTCAAGTTTCCATT
Hey2	mus_Hey2 F.P	CCTGGTCTCTCATCTCAGCA
	mus_Hey2 R.P	GGCCAGAGAGGAAGTCATTG
Nrg1	mus_Nrg1 F.P	AAATCGCCCCCTTCGGAAAT
	mus_Nrg1 R.P	GTCACAAGAAGCAGAGGCCT
EfnB2	mus_EfnB2 F.P	CATCACTTTGGTGGTGCTGC
	mus_EfnB2 R.P	CCATTGTTGTTGCCACCTCG
Bmp10	mus_Bmp10 F.P	TGACCCTTTGCTGGTTGTGT

	mus_Bmp10 R.P	ATCGGGCCCACTGAAGAAAG
Jarid2	mus_Jarid2 F.P	CTGGCCTTCACTCTTCTGCA
	mus_Jarid2 R.P	GCAGATCTGGCACCTCCTTT
Cyclin D1	mus_CyclinD1 F.P	GCCGAGAAGTTGTGCATCTA
	mus_Cyclin D1 R.P	GTTCACCAGAAGCAGTTCCA
Nos3	mus_Nos3 F.P	ATTGGCATGAGGGACCTGTG
	mus_Nos3 R.P	GGTGTCCAGATCCATGCACA

147

148Supplemental Table 20: Oligonucleotide sequences for ChIP qPCR

Gene name	Primer Name	Sequence 5'-3'
	Nos3_R1F.P	GAAACTCTGCCTCTGTCCGA
	Nos3_R1R.P	TCACAGTGTCCAGAAGAGGG
	Nos3_R2F.P	TGAGTCACTTCAGAAGGCCA
Nos3		
	Nos3_R2R.P	CTAGCTGCCGTTGTGATTCC
	Nos3_R3F.P	GAGTATGAGAGAGGCCTCCA
	Nos3_R3R.P	GIGGAAGGGCICIAGIGIGI
Notab1	NotablChID +1150 F D	
moterri	NouthChip_+1130 F.P	ACTOCCIOCCCITICCITAA

Supplemental Figure 2

Top 25 Enriched Gene Ontology Terms

Supplemental Figure 8

A

