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Conventional histologic diagnosis of rejection in kidney transplants has limited repeatability due to its inherent
requirement for subjective assessment of lesions, in a rule-based system that does not acknowledge diagnostic
uncertainty. Molecular phenotyping affords opportunities for increased precision and improved disease classification to
address the limitations of conventional histologic diagnostic systems and quantify levels of uncertainty. Microarray data
from 1,208 kidney transplant biopsies were collected prospectively from 13 centers. Cross-validated classifier scores
predicting the presence of antibody-mediated rejection (ABMR), T cell–mediated rejection (TCMR), and 5 related
histologic lesions were generated using supervised machine learning methods. These scores were used as input for
archetypal analysis, an unsupervised method similar to cluster analysis, to examine the distribution of molecular
phenotypes related to rejection. Six archetypes were generated: no rejection, TCMR, 3 associated with ABMR (early-
stage, fully developed, and late-stage), and mixed rejection (TCMR plus early-stage ABMR). Each biopsy was assigned 6
scores, one for each archetype, representing a probabilistic assessment of that biopsy based on its rejection-related
molecular properties. Viewed as clusters, the archetypes were similar to existing histologic Banff categories, but there
was 32% disagreement, much of it probably reflecting the […]
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Introduction
The drive to develop precision diagnostics arises from the acknowledged limitations of  conventional 
diagnostic systems and disease classifications. This is illustrated by the diagnosis of  rejection in kidney 
transplant biopsies, which is based on histologic lesions interpreted by empirically derived guidelines 
moderated by Banff  consensus (1). There are 2 mechanisms of  rejection: antibody-mediated (ABMR) 
and T cell–mediated (TCMR). The canonical lesions of  TCMR are interstitial inflammation (i-score) 
and tubulitis (t-score), and those of  ABMR are peritubular capillaritis (ptc-score), glomerulitis (g-score), 
and glomerular double contours (cg-score); both ABMR and TCMR can induce endothelial arteritis 
(v-score). Rejection diagnoses are defined by arbitrary thresholds and consideration of  numerous rules 
and exceptions (1). Both the lesions and the diagnoses have limited reproducibility between pathologists 
(2, 3), and the current histology classes have borderline and ABMR-suspicious categories that leave 

Conventional histologic diagnosis of rejection in kidney transplants has limited repeatability due 
to its inherent requirement for subjective assessment of lesions, in a rule-based system that does 
not acknowledge diagnostic uncertainty. Molecular phenotyping affords opportunities for increased 
precision and improved disease classification to address the limitations of conventional histologic 
diagnostic systems and quantify levels of uncertainty. Microarray data from 1,208 kidney transplant 
biopsies were collected prospectively from 13 centers. Cross-validated classifier scores predicting 
the presence of antibody-mediated rejection (ABMR), T cell–mediated rejection (TCMR), and 5 
related histologic lesions were generated using supervised machine learning methods. These scores 
were used as input for archetypal analysis, an unsupervised method similar to cluster analysis, 
to examine the distribution of molecular phenotypes related to rejection. Six archetypes were 
generated: no rejection, TCMR, 3 associated with ABMR (early-stage, fully developed, and late-
stage), and mixed rejection (TCMR plus early-stage ABMR). Each biopsy was assigned 6 scores, one 
for each archetype, representing a probabilistic assessment of that biopsy based on its rejection-
related molecular properties. Viewed as clusters, the archetypes were similar to existing histologic 
Banff categories, but there was 32% disagreement, much of it probably reflecting the “noise” in the 
current histologic assessment system. Graft survival was lowest for fully developed and late-stage 
ABMR, and it was better predicted by molecular archetype scores than histologic diagnoses. The 
results provide a system for precision molecular assessment of biopsies and a new standard for 
recalibrating conventional diagnostic systems.
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some biopsies with indeterminate rejection status. The lesions are not highly disease specific and require 
arbitrary cutoffs. Furthermore, the Banff  guidelines state that ABMR lesions cannot be used to diagnose 
ABMR without donor-specific antibodies (DSA) but fail to acknowledge that DSA can be missed for a 
variety of  reasons (1, 4). The rules are empirically derived with the goal of  achieving a reasonable trade-
off  between over- and underdiagnosis. Thus, in many biopsies, the rejection status is not known with a 
high degree of  certainty, despite the commonly encountered phrase biopsy-proven rejection.

Replacing empirical histologic classifications with probabilistic data–driven molecular estimates of  
disease states offers many advantages (5–9). The most important of  these is the ability to assign a level 
of  confidence to each diagnosis, rather than requiring that all biopsies fulfilling a set of  diagnostic crite-
ria be grouped, with no provision for the strength of  evidence. In addition, the molecular measurements 
are objective, highly reproducible, and require relatively small amounts of  tissue. Molecular tests are 
usually derived by supervised analyses, in which conventional phenotypes (e.g., histologic diagnoses) 
are used to guide the development of  molecular classifiers: machine learning–based algorithms that 
detect patterns of  gene expression associated with the phenotypes. Our previous studies have been 
based on such classifiers comparing rejection vs. nonrejection phenotypes (10–14). However, we have 
subsequently found that methods that combine multiple classifiers provide better estimates than single 
classifiers (15), implying that a new method is needed to assemble the input from multiple classifiers 
into a single probabilistic assessment.

Table 1. Demographics and clinical featuresA

Patient Demographics (n = 1045) All patients
Mean recipient age (range) 52 (18–86)
Recipient sex (% male) 559 (53%)

Ethnicity

European descent 522 (50%)
Black 83 (8%)
Other 100 (10%)

Not available 340 (33%)

Primary Disease

Diabetic nephropathy 156 (15%)
Hypertension/large vessel disease 54 (5%)

Glomerulonephritis/vasculitis 37 (4%)
Interstitial nephritis/pyelonephritis 23 (2%)

Polycystic kidney disease 107 (10%)
Others 468 (45%)

Unknown etiology 200 (19%)
Mean donor age (range) 43 (0.03–85)
Donor sex (% male) 345 (49%)
Donor type (% deceased donor transplants) 692 (66%)
Clinical characteristics at time of biopsy (n = 1,208) All biopsies
Median time of biopsy after transplant (TxBx) in days (range) 591 (1–11453)
Early biopsies (< 1 year) 507 (42%)
Late biopsies (≥ 1 year) 701 (58%)
Maintenance immunosuppression at biopsy, if recorded Tacrolimus 712 (59%)

Cyclosporine 192 (16%)
Not on calcineurin inhibitorsB 319 (26%)

Indication for biopsy

Primary nonfunction 10 (1%)
Rapid deterioration of graft function 217 (18%)
Slow deterioration of graft function 219 (18%)

Stable impaired graft function 79 (7%)
Investigate proteinuria/rejection/BK/creatinine 175 (14%)

Delayed graft function 43 (4%)
Others 443 (37%)

Indication unknown 22 (2%)
ALocal IRB numbers can be found in the Supplemental Acknowledgments. BIncludes Everolimus (1), Sirolimus (25), Belatacept (11), Azathioprine (4), only 
corticosteroid (2), only corticosteroid/MMF (27), only MMF (5), no IS treatment (244).
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One such method is archetypal analysis (AA), which defines a limited set of  extreme or pure pheno-
types (i.e., archetypes) within a data set (16). It is unsupervised in that it chooses the archetypes based 
on patterns in the molecular data alone and does not use external phenotypic information (e.g., histo-
logic diagnoses). An advantage of  AA is that it describes each biopsy as a composite of  the underlying 
archetypes, enabling precise, probabilistic assessments that retain the uniqueness of  each sample, which is 
the ultimate goal of  precision medicine. Furthermore, the use of  AA in combination with dimensionality 
reduction methods such as principal component analysis (PCA) allows the characteristics of  each sample 
to be visualized relative to all other samples in a reference set using 2- or 3-dimensional plots.

Figure 1. Classifier algorithm flowchart. A and B show how the base classifiers (TCMR, ABMR, i > 1, t > 1, g > 0, cg > 0, ptc > 0) were developed, while C–E 
show the archetypal analysis. For each of the 7 base classifiers: (A) 10-fold cross-validation is performed, randomly splitting the 1,208 biopsies into 10 folds 
of equal or near-equal size. For each of 10 iterations, 1 fold is left out as a test set (black box), and a classifier is developed using the remaining 9 folds 
(white boxes) as the training set. All aspects of classifier development, including probe set selection, are carried out from scratch within the training set 
samples at each iteration. The top 20 (by P value) differentially expressed probe sets comparing the binary phenotypes within the training set are selected 
as input features for the classifier. Twelve different classifier algorithms are developed in each training set, generating 12 scores for each test set sample (1 
for each classifier algorithm). The median of these 12 is used as each test set sample’s final score. This process is repeated over all 10 iterations, result-
ing in each biopsy being in a test set once and receiving a single value. This is repeated for each of the 7 base classifiers, resulting in a 1,208 × 7 matrix of 
classifier test set scores (B). This data is used as the input for both the principal component analysis (used for visualizing the multivariate distribution) 
and the archetypal analysis (C–E). We generated 10 archetype models (with n = 1–10 archetypes) (C). The residual sum of squares decreases with increasing 
numbers of archetypes (scree plot in D). We selected 6 archetypes (circled point in D) as the final archetypal model. (E) All biopsy samples are assigned a 
score for each of the 6 archetypes, and cluster assignments are made based on the highest score within that biopsy. The tables included show what typical 
data look like but do not represent actual results. S, archetype score; NR, no rejection; TCMR, T cell–mediated rejection; ABMR, antibody-mediated rejec-
tion; EABMR, early-stage ABMR; FABMR, fully developed ABMR; LABMR, late-stage ABMR; M, Molecular classifier scores; g, glomerulitis; cg, transplant 
glomerulopathy; ptc, peritubular capillaritis; i,  interstitial inflammation; t, tubulitis
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In the present study, our goal was to develop a new system for assessing rejection-related disease states in 
kidney transplant biopsies based on molecular phenotypes. We sequentially applied supervised analysis to detect 
relevant molecular features and then unsupervised analyses to discover the disease classes. In order to sample 
the prevalent renal transplant population, we prospectively collected 1,208 unselected, kidney transplant biopsies 
from 13 international centers. Our goal was to develop a method for probabilistic assessment of rejection as a 
new biopsy diagnostic system and to compare this with the clinical, histological, and serological parameters.

Results

Population and biopsy characteristics
Population demographics (1,208 biopsies from 1,045 patients at 13 international centers; see Supple-
mental Acknowledgments) are shown in Table 1, and histologic diagnoses are shown in Table 2. ABMR 
(C4d+ and C4d–) was diagnosed in 215 biopsies, TCMR in 87, and mixed rejection in 41. Chronic 

Figure 2. Principal component plots of the 1,208 reference set biopsies. The 1,208 × 7 matrix of base classifier scores (Mg, Mptc, Mcg, Mi, Mt, MTCMR, MABMR) was 
used to generate these PCA plots. (A) PC2 vs. PC1, with each biopsy (dot) colored by its histologic diagnosis. The superimposed arrows show the direction and 
relative magnitudes of the correlations between the 7 input variables (the molecular base classifiers) and the PC scores. (B) PC2 vs. PC3 from the same analysis. 
(C and D) The data points are identical to those in A and B but are now colored and labeled by archetype cluster. Locations of the 6 archetype centers are indicat-
ed by the large colored circles. NR, no rejection; TCMR, T cell–mediated rejection; ABMR, antibody-mediated rejection; EABMR, early-stage ABMR; FABMR, fully 
developed ABMR; LABMR, late-stage ABMR; g, glomerulitis; cg, transplant glomerulopathy; ptc, peritubular capillaritis; i, interstitial inflammation; t, tubulitis
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active TCMR was never diagnosed. Some biopsies were assigned 
ABMR-related diagnoses: 24 ABMR suspected and 40 transplant 
glomerulopathy (TG). Borderline changes (canonical TCMR 
lesions below the threshold required for TCMR) were diagnosed in 
109 biopsies. Overall, 516 had rejection or rejection-related diag-
noses. The 692 nonrejecting biopsies should not be interpreted as 
normal, since this heterogeneous group includes many types of  
diseases and insults that occur in prevalent renal transplants, e.g., 
recurrent glomerulonephritis.

Supervised base classifiers
Figure 1 is a flowchart describing the analysis workflow, including 
generation of  the base classifiers and their incorporation as input 
into the AA. We developed molecular classifiers (Figure 1) for esti-
mating each of  7 rejection-related histologic phenotypes: diagno-
sis of  TCMR, diagnosis of  ABMR, and scores for the canonical 
lesions related to TCMR (i- and t-scores) and ABMR (ptc-, g-, and 
cg-scores). Details regarding the 7 base classifiers, each estimated 
using the median of  scores from 12 machine learning algorithmic 
variants, as well as cut-offs and cross-validation methods are outlined 
in the Methods. Molecular base classifiers are designated by an M 
with a subscript indicating the feature they estimate, e.g., Mptc.

The performance of  the base classifiers in terms of  predict-
ing the 7 rejection-related phenotypes can be seen in Supplemental Figure 1; supplemental material 
available online with this article; https://doi.org/10.1172/jci.insight.94197DS1. Although there were 
overlaps in the molecular scores (generated using 10-fold cross-validation; Figure 1A) between histolog-
ic categories, the overall concordance between histology and classifiers was high, with AUCs ranging 
from 0.82–0.87. These molecular scores were used to populate the data matrix (1,208 samples × 7 clas-
sifier scores) depicted in Figure 1B.

Unsupervised AA
To derive a molecular classification of  rejection that combines all base classifier results and minimizes 
reliance on the histologic classes, we set aside histologic diagnoses at this point and treated molecular rejec-
tion–related disease classification as an unsupervised clustering problem (Figure 1, C–E), using the data 
matrix from Figure 1B as the input.

The initial stage in AA involves developing models with different numbers of archetypes and choosing 
which to use as the final model. As with all clustering methods, the choice of cluster number is somewhat 
subjective. We tested models with 1–10 archetypes (Figure 1C) and chose 6 as the optimal number based on 3 
separate criteria. The first was the commonly used “elbow” method (17), where the choice is based on the rela-
tive decrease in the residual sum of squares in a scree plot, as in Figure 1D. The second was by considering how 
the grouping of the biopsies changed when moving from 5 to 6 to 7 archetypes (the most plausible choices from 
the elbow method). Reducing the number to 5 mainly resulted in a merging of the molecular TCMR and mixed 
rejection groupings. Increasing to 7 resulted in a small new cluster similar to early-stage ABMR (EABMR) but 
with lower classifier scores for all ABMR-related phenotypes. The third was that 6 rejection-related groups were 
most congruous with existing beliefs regarding rejection-related states, which indicate 6 general classes: no rejec-
tion (NR), TCMR, EABMR, fully developed ABMR (FABMR), late-stage ABMR (LABMR); and mixed (18).

The final 6-archetype model assigns 6 scores to each biopsy, one for each archetype, with the scores sum-
ming to 1.0. We designate the 6 archetype scores by S with a subscript (e.g., STCMR, SMixed, etc.). Each biopsy 
was also assigned to a single archetype cluster based on its highest archetype score. For descriptive purposes, 
we will refer to the 6 archetype clusters by an “A” followed by a subscripted label reflecting the cluster’s main 
histologic characteristics (e.g., the TCMR archetype cluster is ATCMR).

Figure 1E illustrates archetype scores and cluster assignments for 4 of  the 1,208 samples, which 
have maximum scores in mixed, FABMR, EABMR, and NR, respectively, and are accordingly 
assigned to those clusters. However, much of  the strength of  AA lies in its probabilistic assessment, 

Table 2. Histologic diagnoses 

ABMR-related  
(279)

ABMR 215 (18%)
ABMR (suspected) 24 (2%)

Transplant 
glomerulopathy (TG)

40 (3%)

Mixed  
(TCMR plus ABMR)  

(n = 41)

41 (3%)

TCMR-related  
(196)

TCMR 87 (7%)
Borderline 109 (9%)

No rejection  
(692)

AKI 96 (8%)

BK 37 (3%)
Diabetic nephropathy 18 (1%)

Glomerulonephritis 97 (8%)
IFTA not otherwise 

specified
145 (12%)

No major abnormalities 
(NOMOA)

274 (23%)

OtherA 25 (2%)
AOther include calcineurin inhibitor toxicity (CNIT), C4d deposition without 
morphologic evidence for active rejection, donor origin vascular disease, 
pyelonephritis, systemic infection/diarrhea, and bacterial infection. 
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since assigning single diagnostic categories to samples can be 
misleading. For example, sample 3 in Figure 1E is classified 
in the AEABMR cluster but has nearly equal SEABMR and SFABMR 

scores. (The sum of  the SEABMR, SFABMR, and SLABMR scores can be  
considered as a total ABMR score.) The individual scores pro-
vide more detail than the cluster assignments regarding each 
biopsy. However, the cluster assignments are convenient for sum-
marizing results and are therefore used in the presentation of  
some of  our results.

Visualization using PCA
We used PCA to visualize the data matrix in Figure 1B that is used 
as the input for the AA. In the first 2 principal components (PCs), 
the biopsies distributed between 3 poles characterized by histologi-
cally defined nonrejection, TCMR, and ABMR (Figure 2A, which is 
colored by histologic diagnoses). The superimposed arrows indicate 
the direction and relative magnitude of the correlations between the 
7 molecular input variables and the resulting PC scores, e.g., samples 
with high molecular TCMR and i- and t-classifier scores can be found 

at the bottom of the plot. Other combinations of molecular inputs and sample populations suggest that this 
is a typical and qualitatively robust pattern seen in kidney transplant biopsies (data not shown). The primary 
axis of variation (PC1) is always nonrejection to rejection (left to right in Figure 2A), while the secondary axis 
(PC2) is ABMR to TCMR (top to bottom in Figure 2A). Figure 2B represents the same PCA as Figure 2A but 
shows PC2 vs. PC3 (i.e., the view looking down the x axis of Figure 2A). It is clear that TCMR and ABMR 
represent continua with nonrejection and with each other, as opposed to discrete nonoverlapping entities.

Figure 2, C and D, show the same PCA results as Figure 2, A and B, but colored by the archetype clus-
ter assignments (arrows omitted for clarity). Large circles indicate the locations of  the 6 archetypes. PC3 
now emerges as the continuum from early-stage (cg-poor) ABMR (AEABMR) on the left through fully devel-
oped (AFABMR) to late-stage (cg-dominant) ABMR (ALABMR) on the right. PC3 comprised 5% of  the variance 
in the data, compared with PC1 (57%) and PC2 (35%). Together, PC1, PC2, and PC3 account for 97% of  
the rejection-related variance in the 1,208 × 7 input matrix.

Summary of the main characteristics of each archetype cluster
The mean values for various clinical variables and histologic lesions are shown in Table 3, and the distribu-
tions of  histologic diagnoses within archetype clusters are shown in Table 4.

ANR (n = 774). Biopsies in ANR, the largest cluster (median 395 days after transplant), showed the fewest 
rejection-related abnormalities and had relatively high mean GFR (46 cc/min). These represent the back-
ground level in nonrejecting indication biopsies in these centers. The proportion of  patients positive for 
the clinical features was proteinuria, 0.54; DSA, 0.30; and panel reactive antibody (PRA), 0.55. Note the 
relatively high prevalence of  DSA and PRA in this nonrejecting archetype. The proportion of  biopsies with 
C4d staining was 0.10. The common histologic diagnoses in ANR were no major abnormalities (NOMOA; 
31%), atrophy-fibrosis (IFTA; 16%), and AKI  (12%). The hyalinosis (ah-lesion) scores, which are due in 
part to calcineurin inhibitors, were higher in ANR than in the ATCMR and AMixed clusters, despite similar time 
after transplant (TxBx), compatible with some rejection being triggered by nonadherence (see below) (19).

Figure 3. Archetype characteristics. (A) Trends in mean archetype scores (S) 
over time. The lines represent summarized aggregates of the mean archetype 
scores over (mostly) different patients’ transplants rather than a true time 
course within individual patients. The plotted values are based on a sliding 
window of size n = 150 biopsies. Each line is the mean of that archetype’s 
score in all 1,208 biopsies, not just the members of that archetype cluster. (B) 
Kaplan-Meier survival plot for the 6 archetype clusters. Vertical dash marks 
represent censored observations. A, archetype cluster; NR, no rejection; TCMR, 
T cell–mediated rejection; ABMR, antibody-mediated rejection; EABMR, early- 
stage ABMR; FABMR, fully developed ABMR; LABMR, late-stage ABMR.
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ATCMR (n = 81). These kidneys, biopsied at median TxBx of  355 days, presented with a relatively low prev-
alence of  proteinuria (0.48), DSA (0.26), PRA (0.59), and C4d staining (0.09) and a fairly low mean GFR 
(37 cc/min). The common histologic diagnoses in ATCMR were TCMR (46%), BK virus (19%), and borderline 
rejection (9%). The histologic i-, t-, and v-lesion scores were high, although not as high as in AMixed, and the 
atrophy-scarring (ci and ct) scores were elevated.

AMixed (n = 27). Biopsied at a median TxBx of  360 days, these kidneys shared features of  TCMR and EAB-
MR, and they had the lowest mean GFR (32 cc/min). AMixed biopsies had both histologic TCMR (i-, t-, and v-) 
and histologic ABMR (g- and ptc-) lesions, and a higher prevalence of  DSA (0.59) than ANR or ATCMR. AMixed 
had the lowest hyalinosis score of  any cluster, suggesting that this phenotype is triggered by nonadherence 
(19, 20). The common histologic diagnoses were rejection related: 44% TCMR, 33% mixed, and 11% ABMR.

AEABMR (EABMR, n = 139). With a median TxBx of  487 days, these kidneys had relatively high mean 
GFR (51 cc/min), and many patients had DSA (0.56) and/or PRA (0.79). They had high ptc- and 
g-scores but low cg-scores and relatively little atrophy scarring (ci-score 1.23 and ct-score 1.05). The com-
mon histologic diagnoses were ABMR 35%, NOMOA 14%, and IFTA 14%. Some AEABMR biopsies were 
called borderline (12%) or TCMR (8%), suggesting that EABMR is sometimes misclassified by histology 
because it has TCMR-like i-, t-, and v-lesions (18). The time-dependent histologic cg-lesion scores were 
lower than in the AFABMR and ALABMR clusters.

AFABMR (FABMR, N = 136). Biopsies with AFABMR presented at a median of  1,865 days (~5 years) after 
transplant, with good GFR (46 cc/min). DSA and PRA positivity were common in these patients, but 24% 
were DSA-negative and 10% were PRA-negative, respectively, by local standard-of-care testing, similar to 
a previous analysis (4). Eleven AFABMR cases did not have DSA data recorded. AFABMR biopsies had a high 
prevalence of  C4d positivity (48%) and high scores for the ABMR histologic cg-lesions (1.50), ptc-lesions 
(1.74), and g-lesions (1.32), but low TCMR lesion scores. The most common histologic diagnosis was 
ABMR (62%), but 17 (13%) were called mixed by histology, reflecting the above-mentioned ambiguities 
caused by TCMR-like histologic lesions in pure ABMR. Eleven of  these 17 were called TCMR based only 
on v-lesions, which are unreliable for diagnosing TCMR (20).

Table 3. ValuesA of patient clinical variables and histologic lesion scores in the 6 archetype clusters in 1,208 biopsies

Variable
Archetype cluster

ANR 
n = 774 (64%)

ATCMR 
n = 81 (7%)

AMixed 
n = 27 (2%)

AEABMR 
n = 139 (12%)

AFABMR 
n = 136 (11%)

ALABMR 
n = 51 (4%)

Median TxBx (days) 395 355 360 487 1,865 2,804
GFR (cc/min) 46 37 32 51 46 32
Proteinuria 0.54 0.48 0.74 0.52 0.79 0.86

DSA 0.30 (74)B 0.26 (7) 0.59 (5) 0.56 (7) 0.76 (11) 0.49 (6)
PRA 0.55 0.59 0.77 0.79 0.90 0.80
C4d 0.10 (190) 0.09 (14) 0.24 (10) 0.24 (28) 0.48 (33) 0.28 (8)

Donor age (years) 45 42 41 41 37 36
Recipient age (years) 52 46 42 52 45 49

g (glomerulitis) 0.16 (17) 0.16 (2) 0.62 (1) 0.95 (1) 1.32 (4) 0.98 (4)
ptc (capillaritis) 0.23 (22) 0.53 (6) 1.56 (0) 1.01 (2) 1.74 (3) 1.02 (5)

cg (double contours) 0.18 (17) 0.04 (3) 0.31 (1) 0.34 (3) 1.50 (6) 1.50 (5)
i (interstitial infiltrate) 0.28 (11) 1.85 (1) 2.31 (1) 0.62 (0) 0.50 (4) 0.69 (3)

t (tubulitis) 0.33 (14) 2.00 (1) 2.11 (0) 0.56 (0) 0.37 (3) 0.32 (4)
v (vasculitis) 0.02 (46) 0.27 (2) 0.46 (3) 0.10 (7) 0.16 (14) 0 (6)
ci (scarring) 1.11 1.55 1.04 1.23 1.64 1.85
ct (atrophy) 1.08 1.53 1.00 1.05 1.53 1.74

cv (intimal thickening) 1.02 0.90 0.92 0.83 1.24 1.14
ah (hyalinosis) 1.11 0.51 0.38 0.85 1.43 1.93

AMain table entries indicate means; time after transplant (TxBx) indicate medians. Proteinuria, DSA, PRA, and C4d are coded as positive/present = 
1, negative/absent = 0. Therefore, the means for these variables indicate the proportion of biopsies that were positive/present. Missing values were 
excluded from the calculations. BNumbers in parentheses indicate the number of biopsies with missing values for the variables most often used in the 
diagnosis of rejection.
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ALABMR (Late ABMR, n = 51). ALABMR biopsies presented at a median of  2,804 days (~8 years) after trans-
plant, with low GFR (32 cc/min) and a high prevalence of  proteinuria (0.86). Only 49% had DSA, the 
lowest of  the 4 ABMR/mixed clusters, similar to our previous estimates of  late cg-dominant ABMR (4, 18). 
The common histologic diagnoses were ABMR (47%) and TG (14%). The cg-score was high (1.5), similar to 
AFABMR, but the ptc- and g-scores were lower, more like those in AEABMR. There was extensive scarring with ci 
at 1.9 and ct at 1.7. The ah score was 1.9, the highest of  any cluster (in keeping with the association of  high 
ah scores with chronic glomerular diseases and time after transplant; ref. 19).

Summary of discrepancies between histologic diagnoses and archetype clusters
Table 5 shows, within each histology diagnostic category, the number and proportion of  biopsies assigned 
to each archetype cluster. The main areas where there were discrepant findings between histology and 
archetypes were as follows: i) histologic ABMR was 25% ANR; ii) histologic TG was 60% molecular rejec-
tion, usually ABMR; iii) histologic mixed rejection was only molecular mixed (AMixed) 22% of  the time, usu-
ally being molecular ABMR; iv) histologic TCMR was 43% molecular TCMR but was often NR, mixed, or 
ABMR; v) histologic borderline rejection, which is defined by TCMR-related i- and t-lesions, was usually 
molecular NR (ANR 72%) and was more likely to be molecular ABMR (20%) than ATCMR (6%). Of  all 516 
assigned histologic diagnoses related to rejection, 280 of  516 (54%) were molecularly discrepant.

Of 692 biopsies with no histologic rejection, 108 (16%) had molecular rejection. Of interest is the appar-
ent molecular rejection (ABMR or TCMR) in 20 biopsies with histologic GN, and molecular ABMR in 3 
biopsies with diabetic nephropathy. These suggest that rejection diagnoses can be missed when another his-
tologic disease is present, perhaps because canonical rejection histologic lesions such as cg can be obscured 
by other diseases. Histologic BK virus nephropathy biopsies are 41% ATCMR. This is mainly due to a conven-
tion by which some pathologists will not diagnose TCMR, despite typical lesions, when BK nephropathy is 
diagnosed (10), due to uncertainty as to whether the lesions are caused by rejection or virus infection.

Relationship between archetype scores and time after transplant
Figure 3A shows the change in the means of  the 6 archetype scores (S) over TxBx. Since the sum of  the 
scores at any given TxBx is 1.0, the mean score can also be interpreted as prevalence. Molecular nonrejec-
tion (ANR) represented ~75% of  early biopsies but fell to ~50% by the first year. Molecular TCMR (ATCMR) 
was most common around 200 days and was rare after 7 years. Molecular mixed rejection (AMixed) was 

Table 4. Number of biopsies with each histologic diagnosis in the 6 archetype clusters (% of columns)

Archetype cluster
Histologic 
diagnosis

n = 1208 ANR 
n = 774

ATCMR 
n = 81

AMixed 
n = 27

AEABMR 
n = 139

AFABMR 
n = 136

ALABMR 
n = 51

ABMR-related 
n = 279

ABMR 215 (18%) 54 (7%) 2 (2%) 3 (11%) 48 (35%) 84 (62%) 24 (47%)
ABMR 

suspected
24 (2%) 11 (1%) 1 (1%) 1 (4%) 3 (2%) 5 (4%) 3 (6%)

TG 40 (3%) 16 (2%) 1 (1%) 0 (0%) 5 (4%) 11 (8%) 7 (14%)
Mixed 41 (3%) 3 (0%) 6 (7%) 9 (33%) 5 (4%) 17 (13%) 1 (2%)
TCMR-related  
n = 196

TCMR 87 (7%) 27 (3%) 37 (46%) 12 (44%) 11 (8%) 0 (0%) 0 (0%)
Borderline 109 (9%) 79 (10%) 7 (9%) 1 (4%) 17 (12%) 3 (2%) 2 (4%)

Not rejection-
related 
n = 516

No major 
abnormalities 

(NOMOA)

274 (23%) 240 (31%) 3 (4%) 0 (0%) 20 (14%) 6 (4%) 5 (10%)

AKI 96 (8%) 90 (12%) 0 (0%) 0 (0%) 6 (4%) 0 (0%) 0 (0%)
IFTA 145 (12%) 123 (16%) 2 (2%) 1 (4%) 12 (9%) 3 (2%) 4 (8%)
GN 97 (8%) 77 (10%) 5 (6%) 0 (0%) 8 (6%) 5 (4%) 2 (4%)

Diabetic 
nephropathy

18 (1%) 15 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3 (6%)

BK 
nephropathy

37 (3%) 20 (3%) 15 (19%) 0 (0%) 1 (1%) 1 (1%) 0 (0%)

Other 25 (2%) 19 (2%) 2 (2%) 0 (0%) 3 (2%) 1 (1%) 0 (0%)
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never common (n = 27) and had a long peak extending from ~200–1,000 days. Some molecular EABMR 
(AEABMR) was detected in the first months (usually in patients transplanted with positive DSA; ref. 21), but 
the main peak was around 900 days before becoming uncommon in late biopsies. Molecular FABMR 
(AFABMR) started to become common after 2 years, peaked at ~10 years, and decreased in prevalence thereaf-
ter. Molecular LABMR (ALABMR) was rare before 4 years but became progressively more common from that 
point onward, particularly after 10 years.

Graft failures after biopsy
Figure 3B shows Kaplan-Meier estimates of  death-censored graft survival after biopsy in the 879 patients 
with follow-up data available (1 random biopsy per patient). Failures were least common in molecular NR 
(ANR), followed by molecular TCMR (ATCMR). Early failures within 1 year after biopsy were common in 3 
of  the 4 molecular ABMR clusters (AMixed, AFABMR, and ALABMR) but uncommon for AEABMR. We calculated 
bootstrap corrected C-statistics (analogous to AUCs) for predicting 3-year survival using the archetype clus-
ters, archetype scores, or Banff  rejection–related diagnostic categories (each biopsy being defined as one of  
ABMR, TCMR, mixed, borderline, and NR). The C-statistics were: histologic diagnoses (0.60), archetype 
cluster assignments (0.65), and archetype scores (0.73). The P values for comparing these estimates were: 
archetype scores vs. either histologic diagnoses or clusters, 3 × 10–6; diagnoses vs. clusters, 0.06.

Discussion
We analyzed 1,208 indication biopsies from 13 centers with the goal of  developing a new molecular classi-
fication for rejection in kidney transplant biopsies. Seven molecular rejection–related scores were generated 
using supervised analysis based on histologic diagnoses and lesion scores. To avoid excessive reliance on 
any one classifier method, each of  the 7 scores was defined as the median of  the output from 12 different 
classifier algorithms. These molecular scores, assigned as test set results via cross-validation, were then used 

Table 5. Discrepancies between histologic diagnoses and the archetype cluster assignments of nonrejection, TCMR, mixed, and all 
ABMR combined

Histologic diagnosis

Archetype cluster (% of row) Discrepancies between 
molecular diagnoses 

(clusters) in each histologic 
diagnostic categoryA 

(=% of row)

n = 
1208

ANR  n = 774
ATCMR 
n = 81

AMixed 
n = 27

All ABMR 
n = 326

ABMR-related 
n = 279

ABMR 215 54 (25%) 2 (1%) 3 (1%) 156 (72%)B 59/215 (27%)
ABMR suspected 24 11 (46%) 1 (4%) 1 (4%) 11 (46%) 13/24 (54%)

TG 40 16 (40%) 1 (2%) 0 (0%) 23 (58%) 24/40 (60%)
Mixed n = 41 Mixed 41 3 (7%) 6 (15%) 9 (22%) 23 (56%) 32/41 (78%)

TCMR-related 
n = 196

TCMR 87 27 (31%) 37 (43%) 12 (14%) 11 (13%) 50/87 (57%)
Borderline 109 79 (72%) 7 (6%) 1 (1%) 22 (20%) 102/109 (94%)

All histologic rejection related 516 190 (37%) 54 (10%) 26 (5%) 246 (48%) 280/516 (54%)

Not rejection-related 
n = 692

No major abnormalities 
(NOMOA)

274 240 (88%) 3 (1%) 0 (0%) 31 (11%) 34/274 (12%)

AKI 96 90 (94%) 0 (0%) 0 (0%) 6 (6%) 6/96 (6%)
IFTA 145 123 (85%) 2 (1%) 1 (1%) 19 (13%) 22/145 (15%)
GN 97 77 (79%) 5 (5%) 0 (0%) 15 (15%) 20/97 (21%)

Diabetic nephropathy 18 15 (83%) 0 (0%) 0 (0%) 3 (17%) 3/18 (17%)
BK nephropathy 37 20 (54%) 15 (41%) 0 (0%) 2 (5%) 17/37 (46%)

Other 25 19 (76%) 2 (8%) 0 (0%) 4 (16%) 6/25 (24%)
All histologic nonrejection related 692 584 (84%) 27 (4%) 1 (0.1%) 80 (12%) 108/692 (16%)

Total discrepancies: 387/1,208 (32%)
AConsidering the histologic diagnosis of borderline as “suspicious for TCMR” (1), and therefore discrepant when it is ANR, AMixed, or all ABMR; ABMR 
suspected as discrepant when it is ANR, ATCMR, or AMixed. BThe bolded numbers indicate the agreement between the histologic assessment and the 
molecular assessment. All others are discrepancies. =% of, percent of total number analyzed. TG, transplant glomerulopathy; TCMR, T cell–mediated 
rejection; NOMOA, no major abnormalities; AKI, acute kidney injury; IFTA, atrophy-fibrosis with no explanatory disease state; GN, glomerulonephritis; 
MMDx, Molecular Microscope Diagnostic System.
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as inputs for an unsupervised AA that produced 6 clusters corresponding to NR, TCMR, mixed rejection, 
and early-stage, fully developed, and LABMR. Molecular TCMR was predominant early, becoming rare 
by 10 years. Molecular ABMR occupied a continuum of  molecular space and was composed of  3 partially 
differentiated subtypes that probably represent phases in the natural history of  ABMR. These peak at medi-
an times of  approximately 500; 1,900; and 2,800 days after transplant, respectively. In addition, a subtype 
of  relatively early biopsies (AMixed, median ~1 year) had both TCMR and ABMR characteristics, as well as 
histologic evidence of  nonadherence. Progression to graft failure after biopsy was common in ABMR and 
was better predicted by the archetype scores than by histologic diagnoses or archetype clusters, most likely 
due to the higher information content of  continuous scores. The 32% discrepancy rate with histology was 
comparable with previous analyses of  the uncertainty in histology based on the limited reproducibility of  
lesions and diagnoses. The results provide a critical assessment of  the rejection states in the prevalent renal 
transplant population and highlight potential opportunities for diagnostic improvement.

The strength of  the present analysis is that it combines the base classifiers in an unsupervised analysis 
without being constrained by existing histologic classes, letting the molecular data itself  show the patterns 
of  variation. Once these patterns/clusters were established, their characteristics in terms of  histologic and 
clinical phenotypes were summarized. There is no single unsupervised clustering method that is “best” for 
all data sets, and the choice should be based on experience with the clinical phenotypes (domain-specific 
knowledge) and the particular objectives of  the study. After evaluating several alternatives, we selected AA 
as our method of  choice. K-means clustering, while popular, generates only discrete clusters, not probabili-
ties. In addition, the clustering of  k-means and related methods tends to place too much emphasis on PC1 
and PC2 at the expense of  lower PCs (based both on previous reports and observations from our own data; 
ref. 22). Note the importance of  PC3 in this analysis in revealing the continuum in ABMR. An additional 
advantage of  AA is that the archetype locations are less affected by the density of  samples, in particular 
areas of  multivariate space, making it more resistant to variation in the specific case mix of  the population 
being analyzed (16).

The previously developed and independently validated molecular classifiers for ABMR (12, 13) and 
TCMR (10, 11), plus the lesion classifiers described in this paper, can now be merged into the AA diagnos-
tic system to assess rejection-related states in new biopsies. When new samples become available, their gene 
expression data can be fed directly into the fixed classifiers from this study to generate AA-based molecular 
assessments. There are several reasons why this system will improve estimates of  disease states compared 
with our earlier classifiers. First, the sample size (1,208 biopsies) is larger than in the earlier papers (403 
for both TCMR and ABMR). Second, in looking at large numbers of  individual classifier scores, there are 
occasionally samples that seem anomalous, e.g., high ABMR with low rejection scores. Combining differ-
ent perspectives by using classifiers for several different aspects of  rejection minimizes the influence of  out-
lier results. Likewise, for samples that are difficult to call because of  indeterminate molecular phenotypes, 
the combination of  more “molecular opinions” helps to clarify matters. Third, even within a single base 
classifier, we found that using the median of  12 diverse classifier methods generated results that were more 
consistent than those based on a single method, as we did in the earlier papers.

An unexpected benefit of  the unsupervised combined molecular phenotype approach used here is that 
it finds phenotypes that are not directly accessible through the use of  simple ABMR/TCMR/rejection 
base classifiers. An ABMR classifier built from a comparison of  ABMR vs. everything else in this data set 
correlates strongly with what turns out to be the FABMR (AFABMR) archetype but is unable to find many of  
the LABMR (ALABMR) group because they, on average, have fairly weak pure ABMR signals. Detecting this 
phenotype requires an approach more subtle than averaging, or even weighting a set of  ABMR genes. AMixed 
provides another such example. This represents a fairly uncommon phenotype that we could conceivably 
have named the nonadherent cluster. These examples illustrate how AA can discover emergent properties 
of  the raw molecular data that could not be found using simpler univariable approaches.

While several factors probably contribute to the discrepancies between molecular and histologic diag-
noses, the poor agreement between pathologists in assigning diagnoses in abnormal biopsies (2, 3, 10) sug-
gests that errors in conventional phenotyping play a large role. Some errors are due to questionable guide-
lines: the pathologist seeing tubulitis and interstitial infiltrate in ABMR will diagnose “mixed”, despite 
the fact that these are nonspecific lesions in inflammatory renal diseases (23, 24). Endothelial arteritis 
(presence of  v-lesions) is also ambiguous, occurring in TCMR, ABMR, and renal injury (20), yet it can be 
used to diagnose either TCMR or ABMR. Much weight is placed on DSA, although this occurs in many 
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indication biopsies with no molecular rejection (25). Other discrepancies are the result of  inconsistencies 
associated with assigning DSA status, which is complicated by considerations of  specificity, IgG subclass, 
and complement binding. Some discrepancies may reflect sample heterogeneity since the biopsy core that 
is read for histology is different from the core assessed by microarray, although our analysis of  molecular 
scores in samples divided in half  suggests that core-to-core variation in molecular scores is low (26). Some 
discrepancies will reflect variability in the molecular scores, although we have minimized this by using the 
median of  12 classifier methods for each of  the 7 base classifiers (see Methods). Finally, dividing a continu-
um of  phenotypes into distinct categories inevitably leads to apparent discrepancies based solely on where 
samples fall in relation to the thresholds imposed by the decision rules: it is better to retain the actual, 
probabilistic scores for each biopsy.

The distribution of  the archetype scores over time offers insights into the natural history of  rejec-
tion disease states in organ transplants, confirming the general features of  the 6 histology-based classes 
and consistent with the observations in other cohorts (27–29). Biopsies in the early period predominantly 
show nonrejection, except for a very early peak in AEABMR that probably reflects ABMR caused by preexist-
ing DSA. TCMR dominates later in the first year but gradually becomes rare, possibly reflecting adaptive 
changes in donor-specific T cell responsiveness related to immune checkpoints (30). Recent nonadherence 
often presents as late TCMR or mixed TCMR plus early ABMR around 12–24 months (19, 31). A period 
of  nonadherence may also trigger DSA and subclinical ABMR, which can present years later in apparently 
adherent patients (27). The striking interaction between TxBx and the diagnosis of  early-stage, fully devel-
oped, and late-stage molecular ABMR has implications for understanding the natural history of  ABMR. 
The peak times at which patients with early-stage, fully developed, and LABMR present with biopsy indi-
cations (500; 1,900; and 2,800 days) suggest stages of  disease progression, but also imply that ABMR is 
often relatively silent. Thus, some EABMR is probably missed until presenting as FABMR, and some FAB-
MR must be silent until presenting as LABMR. Moreover, it is striking that EABMR rarely presents after 
10 years. These findings raise fundamental questions about the DSA/ABMR problem: what is the natural 
history of  DSA? Can DSA and ABMR spontaneously disappear? What determines the pathogenicity of  
DSA? How can silent ABMR phenotypes be detected in the clinic, and if  they can, how should they be 
managed? The use of  the archetype method to assess each biopsy’s molecular rejection phenotype will be 
useful in addressing such unknowns.

The present approach is of  general interest for improving existing diagnostic systems and disease clas-
sifications via precision assessments. Histologic and molecular features are never truly specific (14) because 
disease processes share mechanisms with the nonspecific response to wounding, including innate immunity 
and microcirculation remodeling. Since many cases are diagnostically difficult, as acknowledged in the 
histology guidelines by specifying “borderline” and “ABMR suspected” categories, diseases (here specified 
as rejection states) should be assessed probabilistically. These probabilities are best evaluated by combining 
the output from multiple machine learning–based algorithms. This will provide the most precise evaluation 
of  each biopsy, and as such should be used to inform clinical decisions.

Methods
Population and biopsy processing. The 1,208 biopsy samples were collected from 1,045 patients (Table 1). 
Biopsy samples were run on Affymetrix hgu219 PrimeView microarray chips. Of  these samples, 529 have 
been published previously using the older Affymetrix hgu133plus2 chip (http://www.ncbi.nlm.nih.gov/
geo/; accession numbers GSE36059 and GSE48581). One hundred and seventy-four of  the earlier biopsies 
no longer had RNA available and were therefore not included in the present study. The details of  microar-
ray expression data are posted on the Gene Expression Omnibus (GEO) website (http://www.ncbi.nlm.
nih.gov/geo/; accession number GSE98320).

The 7 base classifiers. Interquartile range (IQR) filtering was first performed to reduce the total number of  
probe sets analyzed from the original 49,495 to roughly half: 24,693. This is a nonspecific filtering method 
for eliminating low variance probe sets that are likely, a priori, to be noninformative. It does not make use 
of  any information regarding the samples’ phenotypes and is, therefore, unbiased in that regard.

AA used 7 molecular scores as inputs. These scores were based on classifiers designed to estimate the 
probability of  each of  the following phenotypes: TCMR (samples diagnosed with histologic TCMR vs. all 
other biopsies); ABMR (histologic ABMR [C4d– and C4d+] vs. all other biopsies; note that for both these 
classifiers, “all other biopsies” included mixed rejection; high i-lesions (i-lesions > 1 vs. those ≤ 1); high 
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t-lesions (t-lesions > 1 vs. those ≤ 1); high g-lesions (g-lesions > 0 vs. those = 0); high cg-lesions (cg-lesions 
> 0 vs. those = 0); and high ptc-lesions (ptc-lesions > 0 vs. those = 0).

The cutoffs for the lesion classifiers were chosen to reflect those used by the Banff  system for making 
diagnoses, although there is ongoing debate as to how the g- and ptc-scores should be combined.

Each of  the 7 classifiers was built as follows. Biopsies were divided randomly into 10 groups or “folds” 
of  approximately equal size (Figure 1A). Each fold was left out in turn and used as the test set for the 
classifiers trained in the remaining 9 of  10 folds (the training set), resulting in a 10-fold cross-validation 
(CV) of  the data. In each training set, 12 different classifier algorithms were used to generate a probability 
between 0.0 and 1.0 in each test set sample. The median of  the 12 classifier scores was used as the final 
output for each test set sample. We reasoned that this ensemble approach provided a more stable score than 
using any single method. The 12 classifiers (and associated functions in the “caret” package of  “R” were: 
linear discriminant analysis (lda), regularized discriminant analysis (rda), mixture discriminant analysis 
(mda), flexible discriminant analysis (fda), gradient boosting machine (gbm), radial support vector machine 
(SVMR), linear support vector machine (SVML), random forest (rf), C5.0, neural networks (nnet), Bayes 
glm (bayesglm), and generalized linear model elastic-net (glmnet). The TCMR and ABMR classifiers are 
similar to those used in our earlier publications (10, 12), which were based on a smaller data set and used 
only 1 classifier method (lda), rather than the median of  12. It is important to note that, in all cases, no 
information of  any sort leaked from a sample into data that was used to generate its scores. For example, 
probe set selection was done from scratch within each training set fold  in the cross-validations.

After completing the 10-fold assessment of  the 1,208 biopsies, an additional set of  12 classifiers for 
each of  the 7 phenotypes was built using all 1,208 biopsies. These were the final models — the ones to be 
used on future data to generate input for the AA.

AA. In choosing a method for the unsupervised component of this study, we had 4 main requirements: 
i) both probabilistic and discrete estimates of cluster membership had to be generated; ii) the clusters should 
conform at least approximately with the currently accepted Banff  diagnostic rejection categories; iii) the proba-
bilities should align reasonably with the distributions in the PCA plots, e.g., a sample in Figure 2A at (x = 3, y = 
–5) should have a higher TCMR probability than one at (x = 1, y = –2) because it is farther away from the non-
rejecting biopsies at the far left of the plot; and iv) the same method that was used to assign cluster scores/clus-
ters to the 1,208 reference set samples could be used for assigning scores/clusters in future, unknown samples.

After testing several alternative unsupervised methods, we selected AA (22, 32) rather than clustering 
methods such as k-means and partitioning around medoids because AA allows each sample to be assigned 
a probability of  membership in each archetype/cluster, in addition to a class assignment based on the clus-
ter with the highest score. Although there are versions of  k-means that allow for probabilistic class mem-
bership (fuzzy k-means clustering), they share with k-means the characteristic that distance (and therefore 
probability) is measured relative to the center of  each cluster rather than based on the extremal points as in 
AA — a characteristic we think is more in keeping with an intuitive interpretation of  the distributions as 
visualized in the PCA plots of  Figure 2. Related to clustering, AA is a method that describes data in terms 
of  combinations of  a fixed number of  archetypal samples. These lie toward the edges of  the multivariate 
data distribution and describe a boundary encapsulating a large proportion of  the data set. The archetypes 
are hypothetical rather than real samples, being caricatures of  idealized extreme phenotypes. Each sample 
in the population gets a score between 0.0 and 1.0 for each archetype, under the constraint that the scores 
across all archetypes within each individual sum to 1.0. It is an unsupervised method, since the algorithm 
is given only the raw data, not any descriptive or outcome-related information (e.g., diagnoses). It has been 
used in a wide variety of  fields, including sports analytics (33), astrophysics (34), marketing (35), and bio-
informatics/medicine (16, 36, 37). Although it is common to show archetype results on a PCA plot as we 
do here, AA is conceptually very different from PCA. For instance, it employs no dimensionality reduction 
and gives equal weight to each of  the original (scaled) input variables. PCA is used in connection with AA 
for visualization purposes only and should be considered only a rough approximation of  the actual data 
(7-dimensional in our case) on which the AA is based.

Archetypes were assigned using the “archetypes” (22) package in “R”. This archetype model is then 
used for generating both the archetype clusters and scores in the 1,208 set and clusters/scores in future 
biopsy samples (once they have had their base molecular scores assigned by the 7 fixed base classifiers).

Statistics. Selection of  the top 20 probe sets used in each fold of  cross-validation for the base classifiers 
was based on a Bayesian t test implemented in the “topTable” function of  the “R” limma package. Cox 
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regressions and associated bootstrap-corrected C-statistic estimates were implemented using the “cph” and 
“validate” functions, respectively, from the “R” rms package.

Study approval. All biopsies were collected in protocols approved by the IRB in each of  the 13 centers. 
The study was registered at clinicaltrials.gov (NTC1299168).

Author Contributions
JR contributed data analysis and manuscript writing\reviewing. GAB contributed biopsies, acquired data, 
and assisted with manuscript development and editing. FE contributed biopsies, acquired data, and assist-
ed with manuscript development and editing. GE contributed biopsies, acquired data, and assisted with 
manuscript development and editing. CL contributed biopsies, acquired data, and assisted with manuscript 
review. AL contributed biopsies, acquired data, and assisted with manuscript review. PFH was the princi-
pal investigator and assisted with manuscript writing\reviewing. MMDx-Kidney study group contributed 
biopsies, acquired data, and assisted with manuscript editing.

Acknowledgments
See Supplemental Acknowledgments for consortium details.

We gratefully acknowledge the support of  the Industrial Research Assistance Program. This research has 
been supported by funding and/or resources from University Hospital Foundation at the University of  
Alberta, Genome Canada, Canada Foundation for Innovation and Roche Organ Transplant Research 
Foundation. PFH held a Canada Research Chair in Transplant Immunology until 2008 and currently holds 
the Muttart Chair in Clinical Immunology. Funding for this research supported by Genome Canada, Can-
ada Foundation for Innovation, and Roche Organ Transplant Research Foundation.

Address correspondence to: Philip F. Halloran, Alberta Transplant Applied Genomics Centre, #250 
Heritage Medical Research Centre, University of  Alberta, Edmonton, AB T6G 2S2, Canada. Phone: 
780.492.6160; Email: phallora@ualberta.ca.

 1. Loupy A, et al. The Banff  2015 Kidney Meeting Report: Current Challenges in Rejection Classification and Prospects for 
Adopting Molecular Pathology. Am J Transplant. 2017;17(1):28–41.

 2. Furness PN, et al. International variation in histologic grading is large, and persistent feedback does not improve reproducibility. 
Am J Surg Pathol. 2003;27(6):805–810.

 3. Furness PN, Taub N, Convergence of  European Renal Transplant Pathology Assessment Procedures (CERTPAP) Proj-
ect. International variation in the interpretation of  renal transplant biopsies: report of  the CERTPAP Project. Kidney Int. 
2001;60(5):1998–2012.

 4. Halloran PF, Famulski KS, Chang J. A Probabilistic Approach to Histologic Diagnosis of  Antibody-Mediated Rejection in Kid-
ney Transplant Biopsies. Am J Transplant. 2017;17(1):129–139.

 5. Szolovits P, Pauker SG. Categorical and Probabilistic Reasoning in Medical Diagnosis. Artif  Intell. 1978;11(3):115–144.
 6. Doust J. Diagnosis in General Practice. Using probabilistic reasoning. BMJ. 2009;339:b3823.
 7. Kim KI, Simon R. Probabilistic classifiers with high-dimensional data. Biostatistics. 2011;12(3):399–412.
 8. Widiger TA, Samuel DB. Diagnostic categories or dimensions? A question for the Diagnostic And Statistical Manual Of  Mental 

Disorders--fifth edition. J Abnorm Psychol. 2005;114(4):494–504.
 9. Woodbury MA, Clive JM. Continuous and discrete global models of  disease. Mathematical Modelling. 1986;7(5–8):1137–1154.
 10. Reeve J, et al. Molecular diagnosis of  T cell-mediated rejection in human kidney transplant biopsies. Am J Transplant. 

2013;13(3):645–655.
 11. Halloran PF, et al. Potential impact of  microarray diagnosis of  T cell-mediated rejection in kidney transplants: The INTER-

COM study. Am J Transplant. 2013;13(9):2352–2363.
 12. Sellarés J, et al. Molecular diagnosis of  antibody-mediated rejection in human kidney transplants. Am J Transplant. 

2013;13(4):971–983.
 13. Halloran PF, et al. Microarray diagnosis of  antibody-mediated rejection in kidney transplant biopsies: an international prospec-

tive study (INTERCOM). Am J Transplant. 2013;13(11):2865–2874.
 14.  Halloran PF, Venner JM, Famulski KS. Comprehensive analysis of  transcript changes associated with allograft rejection: 

Combining universal and selective features [published online ahead of  print January 19, 2017]. Am J Transplant. https://doi.
org/10.1111/ajt.14200.

 15. Halloran PF, Famulski KS, Reeve J. Molecular assessment of  disease states in kidney transplant biopsy samples. Nat Rev 
Nephrol. 2016;12(9):534–548.

 16. Hart Y, et al. Inferring biological tasks using Pareto analysis of  high-dimensional data. Nat Methods. 2015;12(3):233.
 17. Thorndike RL. Who Belongs in the Family? Psychometrika. 1953;18:267–276.



1 4insight.jci.org   https://doi.org/10.1172/jci.insight.94197

R E S E A R C H  A R T I C L E

 18. Halloran PF, Merino Lopez M, Barreto Pereira A. Identifying Subphenotypes of  Antibody-Mediated Rejection in Kidney 
Transplants. Am J Transplant. 2016;16(3):908–920.

 19. Einecke G, Reeve J, Halloran PF. Hyalinosis Lesions in Renal Transplant Biopsies: Time-Dependent Complexity of  Interpreta-
tion. Am J Transplant. 2017;17(5):1346–1357.

 20. Salazar ID, Merino López M, Chang J, Halloran PF. Reassessing the Significance of  Intimal Arteritis in Kidney Transplant 
Biopsy Specimens. J Am Soc Nephrol. 2015;26(12):3190–3198.

 21.  Aubert O, et al. Antibody-mediated rejection due to pre-existing vs. de novo DSA in kidney allograft recipients [published 
online ahead of  print March 2, 2017]. J Am Soc Nephrol. https://doi.org/ 10.1681/ASN.2016070797.

 22.  Eugster MJA, Leish F. From Spider-Man to Hero - Archetypal Analysis in R. J Stat Softw. 2009;30(8):1–23.
 23. Iványi B, Marcussen N, Olsen S. Tubulitis in primary vascular and glomerular renal disease. Pathol Res Pract. 

1995;191(12):1245–1257.
 24. Berden AE, et al. Tubular lesions predict renal outcome in antineutrophil cytoplasmic antibody-associated glomerulonephritis 

after rituximab therapy. J Am Soc Nephrol. 2012;23(2):313–321.
 25. Eskandary F, et al. Diagnostic Contribution of  Donor-Specific Antibody Characteristics to Uncover Late Silent Antibody-Medi-

ated Rejection-Results of  a Cross-Sectional Screening Study. Transplantation. 2017;101(3):631–641.
 26.  Madill-Thomsen KS, Wiggins RC, Eskandary F, Bohmig GA,  Halloran PF. The effect of  cortex/medulla proportions on 

molecular diagnoses in kidney transplant biopsies: rejection and injury can be assessed in medulla [published online ahead of  
print February 22, 2017]. Am J Transplant. https://doi.org/10.1111/ajt.14233.

 27. Wiebe C, et al. Rates and determinants of  progression to graft failure in kidney allograft recipients with de novo donor-specific 
antibody. Am J Transplant. 2015;15(11):2921–2930.

 28. Naesens M, et al. The histology of  kidney transplant failure: a long-term follow-up study. Transplantation. 2014;98(4):427–435.
 29. Hricik DE, et al. Multicenter validation of  urinary CXCL9 as a risk-stratifying biomarker for kidney transplant injury. Am J 

Transplant. 2013;13(10):2634–2644.
 30. Venner JM, Famulski KS, Badr D, Hidalgo LG, Chang J, Halloran PF. Molecular landscape of  T cell-mediated rejection in 

human kidney transplants: prominence of  CTLA4 and PD ligands. Am J Transplant. 2014;14(11):2565–2576.
 31. Sellarés J, et al. Understanding the causes of  kidney transplant failure: the dominant role of  antibody-mediated rejection and 

nonadherence. Am J Transplant. 2012;12(2):388–399.
 32. Cutler A, Breiman L. Archetypal Analysis. Technometrics. 1994;36:338–347.
 33. Eugster MJA. Performance profiles based on archetypal athletes. Int J Perform Anal Sport. 2012;12(1):166–187.
 34. Chan BHP, Mitchell DA, Cram LE. Archetypal analysis of  galaxy spectra. Mon No R Astron Soc. 2003;338:790–795.
 35.  Li S, Louviere J, Carson R, Wang P. Archetypal analysis: A new way to segment markets based on extreme individuals. In: 

A Celebration of  Ehrenberg and Bass: Marketing Knowledge, Discoveries and Contribution ANZMAC 2003 Conference Proceedings. 
Adelaide; 2003:1674–1679.

 36. Thøgersen JC, Mørup M, Damkiær S, Molin S, Jelsbak L. Archetypal analysis of  diverse Pseudomonas aeruginosa transcrip-
tomes reveals adaptation in cystic fibrosis airways. BMC Bioinformatics. 2013;14:279.

 37. Korem Y, et al. Geometry of  the Gene Expression Space of  Individual Cells. PLoS Comput Biol. 2015;11(7):e1004224.


