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Figure S1. The topoligical properties of the placebome module. (A) The placebome module has 

significantly more interactions than random expectation (p<1.0×10-16). (B) The placebome module has a 

significantly larger LCC than random expectation (p<1.0×10-16). (C) The placebome module has a 

significantly smaller diameter than a random protein set (p =4.5×10-21). (D) The placebome module has a 

significantly smaller average shortest path length than a random protein set (p =1.8×10-13).  
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Figure S2.  Significant SNP enrichment of the placebome module. (A) Compared to a random gene set 

from the GWAS background, the placebome module is significantly enriched with SNPs that modify the 

outcome of the placebo arm. (B) Compared to a random gene set from the GWAS background mapped to 

the human interactome, the placebome module is significantly enriched with SNPs that modify the outcome 

of the placebo arm. (C) Compared to a random gene set from the GWAS background, the placebome seed 

genes are significantly enriched with SNPs that modify the outcome of the placebo arm. (D) Compared to 

a random gene set from the GWAS background mapped to the human interactome, the placebome seed 

genes are significantly enriched with SNPs that modify the outcome of the placebo arm. (E) Compared to 

a random gene set from the GWAS background, the placebome seed connectors are significantly enriched 

with SNPs that modify the outcome of the placebo arm. (D) Compared to a random gene set from the 

GWAS background mapped to the human interactome, the placebome seed connectors are significantly 

enriched with SNPs that modify the outcome of the placebo arm. 
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Compiling the comprehensive human interactome 

The mechanisms underlying placebo responses may involve multiple types of molecular 

interactions. We, therefore, used a comprehensive human interactome, which combines physical 

macromolecular interactions from different sources, to ascertain the existence of a placebome 

module. The consolidated human interactome contains protein-protein interactions, protein 

complexes, protein-DNA interactions, kinase-substrate interactions, metabolic interactions, and 

signaling pathways. The protein-protein interactions are derived from several high-throughput 

yeast-two-hybrid studies (1-4) and have also been combined with binary interactions from IntAct 

and MINT databases (5, 6), as well as literature-curated interactions obtained from low throughput 

experiments reported in the IntAct, MINT, HPRD, and BioGRID databases (5-8). The manually 

curated dataset of mammalian protein complexes (CORUM) and experimentally determined 

human protein complexes are also included in the comprehensive set of protein-protein 

interactions (9, 10). Protein-DNA regulatory interactions are taken from the TRANSFAC database 

(11), and kinase-substrate interactions are obtained from the PhosphositePlus database (12). 

Metabolic enzyme-coupled interactions (two enzymes that share adjacent reactions) are derived 

from the KEGG and BiGG databases as compiled previously (13). In addition, protein interactions 

from 3D structural prediction and signaling interactions are also included in the construction of 

the interactome (14, 15). This consolidated human interactome has 14,174 proteins (nodes) with 

170,303 interactions (edges), after removing duplicate interactions and self-loops.  All of the 

placebome seed gene products in Table 1 can be found in this human interactome. 

Connecting the placebome seed proteins 
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Owing to the incompleteness of placebome seed genes and of the human interactome itself, these 

seed gene products may not be densely connected to each other to form a network module.  We, 

therefore, developed an algorithm in which we attempt to connect the placebome seed proteins by 

using as few extra nodes as possible. The principle underlying this algorithm is that seed genes 

should not be very far from each other and, thus, should reach each other through very short paths. 

The algorithm, called the Seed-Connector algorithm, is iterative as follows: 

Step 1. Assume that the seed genes induce a subnetwork. Calculate the size of the largest connected 

component (LCC) of the subnetwork. 

Step 2. Consider all the interactors of the seed genes as identified from the human interactome. 

Add each interactor temporarily to the seed gene list one-by-one. Obtain the subnetwork induced 

by this temporary seed gene list and determine the size of its LCC. 

Step 3. Select those interactors that can increase the coverage of seeds in the LCC of the 

subnetwork maximally, and add them to the seed gene list. 

Repeat Step 1, Step 2, and Step 3 until none of the interactors can increase the coverage of seed 

genes in the LCC of the induced subnetwork. The final subnetwork is the predicted placebome 

module, which is obtained by including as few additional nodes as possible. The placebome 

module obtained by this algorithm has a very high ratio of seed genes (gene products) to connector 

genes (gene products).  

Disease modules and drug categories 
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To gain insights into placebo responses in different diseases, we collected a list of 20 ‘benchmark’ 

diseases (18 known to have moderate or high placebo responses and 2 known to have little or no 

placebo response) and 5 symptom phenotypes on which we have prior knowledge about the 

placebo response based on the literature, and obtained their associated genes from Phenopedia in 

the HuGE navigator (16). The benchmark diseases with high responses are alcoholism (17), 

anxiety (18), asthma (19), Crohn disease (20), depression (21), diabetic neuropathies (22), 

duodenal ulcer (23), epilepsy (24), eating disorders (25), fibromyalgia (22), irritable bowel 

syndrome (26), Parkinson disease (27), migraine disorders (28), osteoarthritis (29), chronic 

pancreatitis (30), restless leg syndrome (31), schizophrenia (32), and ulcerative colitis (33).  The 

two with little or no responses are hepatocellular carcinoma and renal cell carcinoma (34).   The 

five symptoms we considered are pain (35), headache (36), nausea (37), fatigue (38), and hot 

flashes (39). To obtain a reliable list of associated disease genes, we only considered those with at 

least two publications that support the association if the number of associated genes is over 100.  

For prediction purposes, we obtained a comprehensive list of diseases from Phenopedia in the 

HuGE navigator (16) and assessed the relationships between the placebome module and these 

diseases at the systems level.  There are 2909 Medical Subject Headings (MeSH) disease terms 

(downloaded in May, 2016), among which we only consider the terms with more than 50 

associated genes. We also removed some terms that are not typical diseases or symptoms. A final 

list of 859 diseases (and symptoms) were considered in our analysis. Again, we only considered 

those associated genes with at least two publications that support the association if the number of 

associated genes is over 100. We mapped the disease- or symptom-associated gene products to the 

human interactome and derived disease modules or symptom modules. 
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We collected drug categories from DrugBank (40) in which drugs are categorized into different 

groups based on their therapeutic indications. The targets of these drugs include therapeutic drug 

targets, drug carriers, drug enzymes, and drug transporters. We collectively refer to this 

compilation as drug targets. Drug targets are classified based on their drug categories and mapped 

to the human interactome. To increase the power of prediction, we only considered those drug 

categories with at least 20 drug targets in the human interactome. A total of 193 drug categories 

satisfy this criterion. We then assessed the relationships between the placebome module and drug 

target module from each category at the network level. 
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