## **Supplemental Methods**

Expression and purification of recombinant CII peptides. DNA constructs were transformed into *E. coli* BL21(DE3). 5 mL of Luria–Bertani broth (with 50 µg/mL kanamycin) was inoculated with a single colony and incubated at 37 °C with 220 rpm until an OD600 of 0.4. 1mM of isopropyl  $\beta$ -D-1thiogalactopyranoside (IPTG) was added to induce expression; then the cells were incubated overnight at 22 °C with 220 rpm for 16 h. The cells were harvested by centrifugation at 3000 g for 20 min at 4°C, and were lysed in 300 µL Bugbuster (Novagen) containing protease inhibitor tablets (Roche) and benzonase (Novagen). The lysates were stored at -80°C until use. For purification, the bacteria cell pellet was lysed and the resulting supernatants containing the all CII-foldon fragments were purified by immobilized metal ion affinity chromatography using Dynabeads following the supplier's instructions (Invitrogen, Life Technologies, USA).

**Surface Plasmon Resonance (SPR) determination.** Binding of all synthetic triple-helical peptides to ACC1 was analyzed as previously described (1) by SPR using a Biacore T200 biosensor (GE Healthcare) at 25°C. Briefly, an anti-mouse IgG antibody was covalently coupled to a CM5 sensor chip by amino coupling. ACC1 was diluted in PBS-P running buffer (20mM phosphate buffer, 2.7 mM KCl, 137 mM NaCl and 0.05 % Surfactant P20) and injected at 10 $\mu$ L/min with a final concentration of 10 $\mu$ g/mL, to achieve a capture level of about 1000 RU. Triple-helical peptides were then injected over the sensor chip surface at a concentration of 10 $\mu$ g/mL for 60 s at a flow rate of 30 $\mu$ L/min, followed by a 200s dissociation phase. Before each run, all molecules previously bound on the chip (ACC1 and bound peptides) were removed by injection of regeneration solution (glycine-HCl pH 1.7). The thermodynamic (K<sub>D</sub>) and kinetic parameters (k<sub>on</sub> and k<sub>off</sub>) of ACC1 binding to the selected peptides were determined by single-cycle kinetics. The assay was performed in a continuous flow of 5  $\mu$ L/min in PBS-P buffer using five different concentrations of peptide (600 nM, 200 nM, 66 nM, 22 nM and 7 nM). Sensograms were processed using an automatic correction for nonspecific bulk-refractive-index effects. Data processing and analysis were performed using Biacore T200 evaluation software in a heterogenous binding model (GE Healthcare).

**Enzyme-linked immunosorbent assay (ELISA).** ELISA assays were performed to analyze the interaction between ACC1 and different collagens (I, II, IX and XI), Corning Costar plates (Thermo Fisher Scientific) were coated for 2 h with 5 µg/mL denatured collagen (70 °C, 30 min) and blocked with 3% heat-inactivated FBS in DPBS for 2 h at room temperature. Specific binding was detected using HRP-conjugated anti-mouse immunoglobulin kappa light chain antibody (clone 187.1; Southern Biotech) and ABTS (Roche) as substrate. Absorbance at 405 nm was measured by Synergy-2 (BioTek Instruments). An internal standard was used in all ELISA plates to allow comparison between different plates. For analysis of binding of ACC1 to CCP-1 and control peptides, streptavidin-coated high capacity plates (ThermoFisher Scientific) were used to capture the biotinylated peptides for 2 h at RT followed by detection as described above. The Immunoscan CCPlus® Kit (Euro Diagnostica) was used to analyze the binding of mouse monoclonal antibodies ACC1, ACC3, ACC4 and a monoclonal antibody 15A specific for cartilage oligomeric matrix protein (2). Most of the procedures were performed in accordance with the manufacturer's instructions, with the exception that HRP-conjugated anti-mouse immunoglobulin kappa light chain antibody (clone 187.1, Southern Biotech) was used instead of the anti-human antibodies of the kits. The response was measured as described above.

**Histology.** Sections of about 5  $\mu$ m were stained with hematoxylin/eosin or toluidine blue. For determination of mAb reactivity with joint tissue *in vivo*, 2-days old neonate Cia9i mouse were intraperitoneally injected with 100  $\mu$ g of biotinylated mAbs. After 48 hours, the knee joints were snap frozen in isopentane on dry ice and stored at -80°C. Joint sections (5  $\mu$ m) were fixed in 4% paraformaldehyde for 5 min, rinsed in PBS, blocked for endogenous peroxidase for 30 min (0.5% H<sub>2</sub>O with 0.1% Tween 20), incubated with Extravidin<sup>®</sup> peroxidase (Sigma-Aldrich, Saint Louis, MO, USA) for 30 min, and developed with diaminobenzidine (DAB Kit; Dako, Copenhagen, Denmark) for 8-9 min. To assess direct binding of mAb to the tissue sections *in vitro*, limbs from 2 days old naïve Cia9i neonates were harvested and snap frozen, and cryo-sectioned. Sections of 5  $\mu$ m were subjected to 5  $\mu$ g/mL biotinylated mAb for 40 minutes. Extravidin<sup>®</sup> peroxidase and DAB were used for detection.

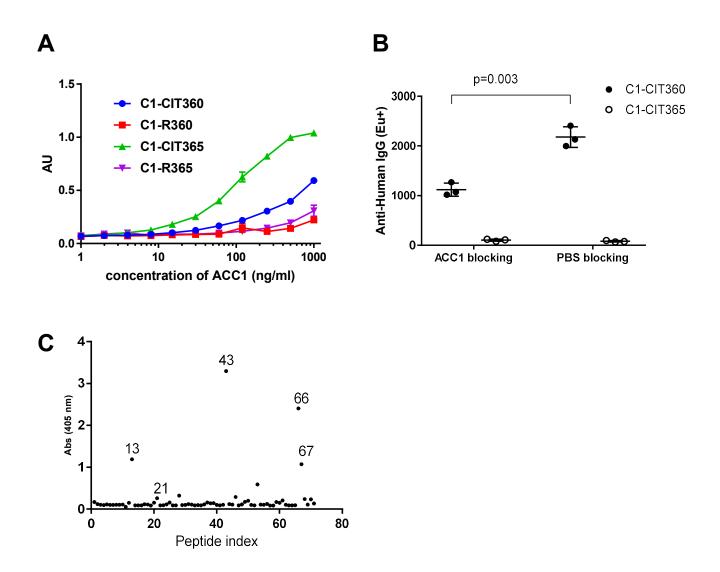
**Preparation and purification of the mAb ACC1Fab fragment.** mAb ACC1 hybridoma cells were cultured using CELLine 1000 flasks (Integra Biosciences). GammaBind Plus Gel Matrix (Pharmacia)

and an ÄKTA chromatography system (GE Healthcare) were used to purify the antibody from the culture supernatant.  $ACC1_{Fab}$  was prepared using the ImmunoPure Fab Preparation Kit (Pierce) in accordance with the manufacturer's instructions. Papain cleavage was evaluated by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. The Fab fragments used for crystallization were further purified by size exclusion chromatography with HiLoad 16/600 Superdex 200. Aliquots of purified  $ACC1_{Fab}$  fragments in 20 mM Tris pH 7.4, and 50 mM NaCl were mixed with the cognate peptides (Supplementary Table 3) in 2-3 times molar excess and incubated overnight before setup of crystallization screens or storage at -80°C before further use.

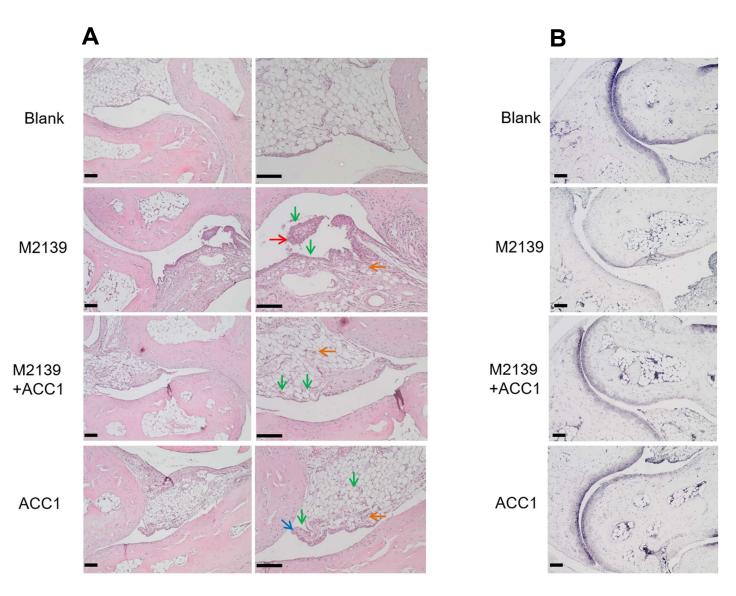
**Crystallization of ACC1-peptide complexes.** The crystals used for data collection were grown and cryo-protected as follows:

ACC1+ C1-CIT365-L: The 2 μl hanging drop consisting of equal volumes of 10 mg/mL complex and 1 mg/mL peptide in 20 mM Tris pH 7.4, 50 mM NaCl, and reservoir solution (16% (w/v) PEG 8000, 0.1 M Hepes pH 7.0) was equilibrated against a 1 mL reservoir. The crystal was cryo-protected by brief soaking in 12% (w/v) PEG 8000, 75 mM Hepes pH 7.0, 25% (w/v) ethylene glycol.

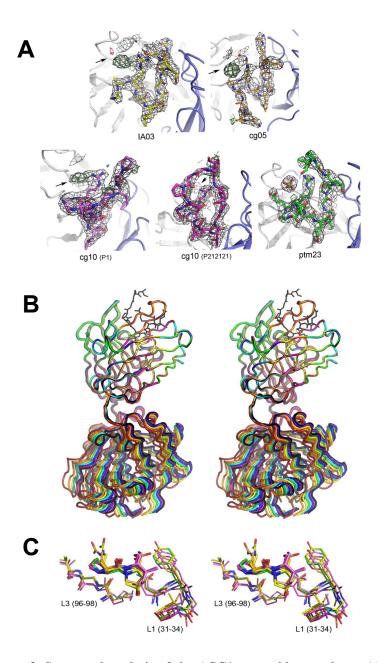
ACC1+ C1-CIT365-T: The sitting drop was pipetted from 0.2 µl protein solution (10 mg/mL in 20 mM Tris pH 7.4, 50 mM NaCl) and 0.1 µl reservoir solution (20% (w/v) PEG 3350, 0.1 M Bistris-Propane pH 6.5, 0.2 M NaBr). The crystal was cryo-protected by brief soaking in 17% (w/v) PEG 3350, 85 mM Bistris-Propane pH 6.5, 0.17 M NaBr, 15% (w/v) ethylene glycol.


ACC1+ CII583-591(P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub>): The 1.5  $\mu$ l hanging drop consisting of 1  $\mu$ l of protein solution (9 mg/mL in 20 mM Tris pH 7.4, 50 mM NaCl) and 0.5  $\mu$ l reservoir solution (20% (w/v) PEG3350, 0.1 M Bistris-Propane pH 7.0, 0.2 M sodium acetate) was equilibrated against a 1 mL reservoir. The cryo-protection solution contained 15% (w/v) PEG3350, 75 mM Bistris-Propane pH 7.0, 0.15 M sodium acetate, and 25% (w/v) ethylene glycol.

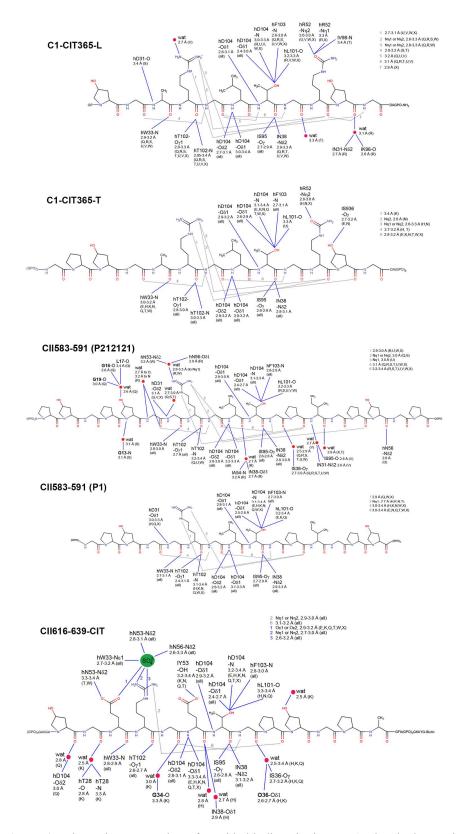
ACC1+ CII583-591(P1): The sitting drop was pipetted from 0.2 µl protein solution (10 mg/mL in 20 mM Tris pH 7.4, 50 mM NaCl) and 0.1 µl reservoir solution (20% (w/v) PEG3350, 0.1 M Bistris-Propane pH 7.5, 0.2 M sodium acetate). The harvested crystal was cryo-protected by soaking in 15%


(w/v) PEG3350, 75 mM Bistris-Propane pH 7.5, 0.15 M sodium acetate, 25% (w/v) ethylene glycol.

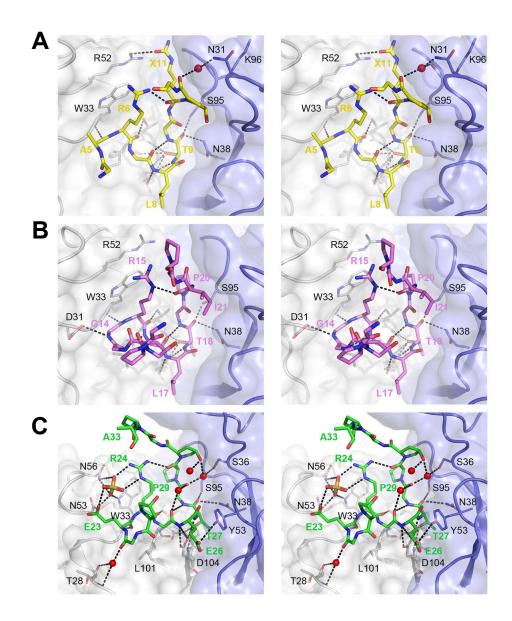
ACC1+ CII616-639-CIT: The sitting drop consisted of 0.2 µl protein solution (10 mg/mL in 20 mM Tris pH 7.4, 50 mM NaCl) and 0.1 µl reservoir solution (20% (w/v) PEG 6000, 0.1 M MES pH 6.0, 0.2 M CaCl2). The harvested crystal was cryo-protected using 15% (w/v) PEG 6000, 75 mM MES pH 6.0, 0.15 M CaCl2, 25% (w/v) glycerol.


- 1. Raposo B, Dobritzsch D, Ge C, Ekman D, Xu B, Lindh I, et al. Epitope-specific antibody response is controlled by immunoglobulin V(H) polymorphisms. *J Exp Med.* 2014;211(3):405-11.
- 2. Geng H, Nandakumar KS, Pramhed A, Aspberg A, Mattsson R, and Holmdahl R. Cartilage oligomeric matrix protein specific antibodies are pathogenic. *Arthritis Res Ther.* 2012;14(4):R191.

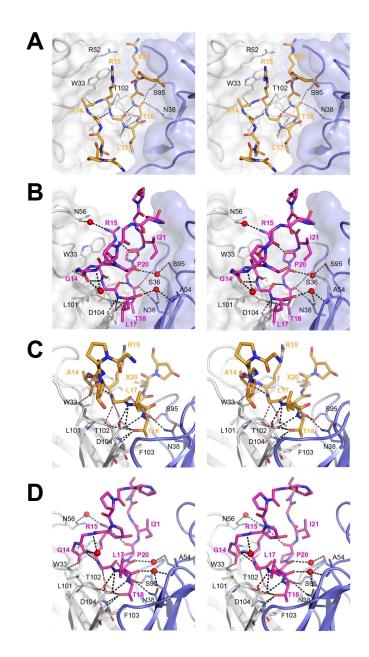



**Supplementary Figure 1. Characterization of ACC1.** (A). Binding of ACC1 for cyclic C1-CIT360, C1-CIT365, C1-R360 and C1-R365 were measured by ELISA. (B). Solid-phase inhibition assay. The ELISA plate coated by cyclic peptide C1-CIT360 or C1-CIT365, was pre-incubated with ACC1 (2ug/ml) and then the sera (1:300 dilution) of a pool of 6 RA patients selected for positivity against C1-CIT360 was added for 3 hours of incubation at RT. The binding of human polyclonal antibodies to the given peptides was measured. One representative experiment was shown from three assays performed using triplicate technical replicates. Data represent mean + SD and the p value was calculated by Mann-Whitney U test to compare different groups. (C). Screening of a recombinant triple-helical peptide library of collagen II with ACC1. A set of 70 recombinant triple-helical peptides was used to assess the specificity of ACC1 in ELISA. The positive peptides are indicated. 13, CII121-144; 21, CII241-264; 43, CII571-591; 66, CII916-939; 67, CII931-954.

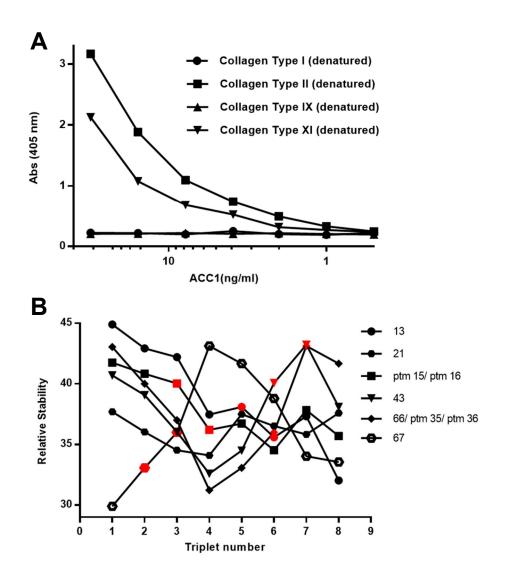



**Supplementary Figure 2. Histology of tarsal joint sections.** Paws of B10Q mice on day 12 after the antibody transfer were collected, fixed, decalcified, sectioned and stained with hematoxylin/eosin (A) or toluidine blue (b). (a) From top to bottom panel, mice were injected with PBS, M2139, M2139+ACC1, and ACC1, respectively. Hyperplasia is marked by red arrow, and infiltration is marked by orange arrow, while angiogenesis and pannus formation are indicated by a green and blue arrow, respectively. (B) From top to bottom panel, mice were injected with PBS, M2139, M2139+ACC1, ACC1, respectively, and stained with toluidine blue to visualize proteoglycan levels. Loss of proteoglycan staining was observed in the M2139, M2139+ACC1, ACC1 groups. Results shown are representative of those obtained from 6 mice in each group. The scale bar represents 100 μm.

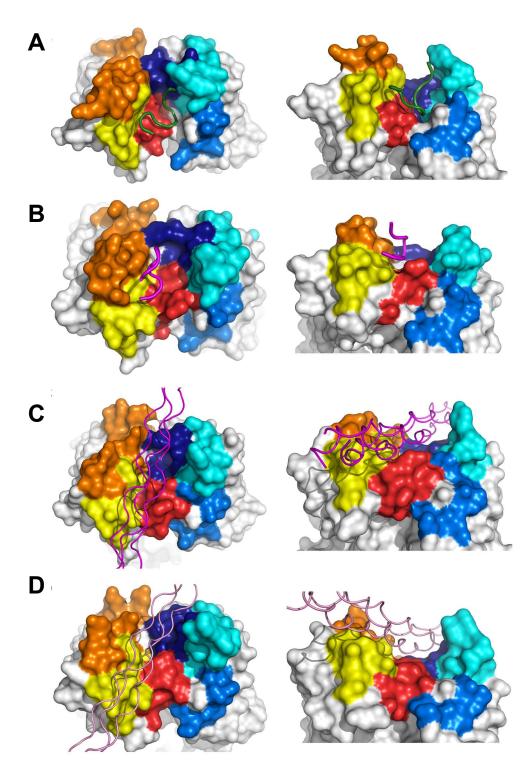



Supplementary Figure 3. Structural analysis of the ACC1<sub>Fab</sub>-peptide complexes. (A). The electron density observed for the peptides bound to ACC1. The final  $2F_o$ - $F_c$  electron density map contoured at 1  $\sigma$  is shown in grey, whereas peaks in the  $F_0$ - $F_c$  map contoured at 3 and -3  $\sigma$  are shown in green and red, respectively. The density observed for the unidentified ion is marked by an arrow. The heavy and light chains of the ACC1<sub>Feb</sub> are depicted in cartoon representation in white and blue, respectively. The bound peptides are shown as sticks with carbon atoms in yellow (C1-CIT365-L), orange (C1-CIT365-T), mauve (CII538-591 in space group P1), magenta (CII538-591 in space group P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub>), and green (CII616-639-CIT), respectively. (B). The VH-domain based superimposition of the eight complex copies present in the asymmetric unit of the ACC1<sub>Fab</sub>-CII616-639-CIT crystal highlights the variation in their elbow angles. Each complex copy is colored differently. For clarity, only one copy of the bound CII616-639-CIT peptide is shown (black sticks). The relative orientation between the variable and constant Fab domains is significantly influenced by crystal packing as indicated by the wide spread of elbow angles calculated for the eight Fab copies per asymmetric unit (e.g. 135-147° for the ACC1Fab-CII616-639-CIT complex). (C). Stereo view of the superposed stretches of the L1 and L3 loops of all  $ACC1_{Fab}$ -peptide complexes that show larger structural deviation due to a sequence variation upstream of the conserved motif in the bound peptides, with Cit-Hyp in C1-CIT365-T and C1-CIT365-L corresponding to Pro-Ile in CII583-591 and Pro-Hyp in CII616-639. For clarity, only these two residues of the peptide are shown (thicker sticks). Carbon atom colors of bound peptide as well as the L1 and L3 residues of the distinct complexes correspond to those used in (A).




**Supplementary Figure 4.** Schematic presentation of peptide binding site in ACC1Fab. The key residues from both heavy chain and light chain of ACC1Fab participating in the hydrogen bonds with the peptide are shown. Hydrogen bonds are illustrated as black lines. Carbon atoms are colored in black, nitrogen atoms in blue, and oxygen atoms in red. For the numbered intrapeptide hydrogen bonds, this information is provided in the legend within the figure. A counter ion found in nearly all structures but only was colored green in  $ACC1_{Fab}$ -CII616-639. For  $ACC1_{Fab}$  residues, the heavy or light chain origin is indicated by an h or l suffix, respectively, followed by the residue type and number, and the name of the atom forming the hydrogen bond.




Supplementary Figure 5. Hydrogen bonding network formed upon peptide binding to acc1, with emphasis on non-conserved interactions. The chosen orientation focuses on less or non-conserved hydrogen bond interactions of peptide residues surrounding the conserved RG-TG motif. The heavy and light chains of the  $ACC1_{Fab}$  are shown as cartoon in white and blue, respectively, and the dimensions of the paratope outlined by the semitransparent molecular envelop. ACC1 residues forming hydrogen bonds to the peptide are shown as sticks, with carbon atoms colored black. Hydrogen bonds are indicated as black dotted lines, water molecules as red spheres. The peptides are shown as thicker sticks, with carbon atoms in yellow (C1-CIT365-L), mauve (CII538-591 in space group P1), and green (CII616-639-CIT), respectively. All peptide residues other than glycine, proline (except the proline occurring in CII538-591 and CII616-639-CIT at the same position as the citrulline in C1-CIT365-L and C1-CIT365-T), and 4-hydroxyproline are labeled in bold and according color. (A)  $ACC1_{Fab}$ -C1-CIT365-L, (B)  $ACC1_{Fab}$ -CII538-591 as in P1 space group, (C)  $ACC1_{Fab}$ -CII616-639-CIT.



Supplementary Figure 6. Hydrogen bonding network formed upon C1-CIT365-T and CII538-591 binding to ACC1. The orientation chosen for A and B focuses on less or non-conserved hydrogen bond interactions of peptide residues surrounding the conserved RG-TG motif, that chosen for C and D on the conserved interactions between the threonine of the conserved peptide motif and the H3 CDR loop. The heavy and light chains of the ACC1<sub>Fab</sub> are shown as cartoon in white and blue, respectively, and the dimensions of the paratope outlined by the semitransparent molecular envelop. ACC1 residues are shown as sticks, with carbon atoms colored black. Hydrogen bonds are indicated as black dotted lines, water molecules as red spheres. The peptides are shown as thicker sticks, with carbon atoms in orange (C1-CIT365-T) and magenta (CII538-591 in space group P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub>), respectively. All peptide residues other than glycine, proline (except the proline occurring in CII538-591 at the same position as the citrulline in C1-CIT365-T), and 4-hydroxyproline are labeled in bold and according color. (A, C) ACC1<sub>Fab</sub>-C1-CIT365-T, (B, D) ACC1<sub>Fab</sub>-CII538-591 as in P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub> space group.



**Supplementary Figure 7. Characterization of ACC1 antibody.** (A) Reactivity of ACC1 towards denatured CI, CII, CIX, and CXI in ELISA. The Corning Costar plates (Thermo Fisher Scientific) were coated for 2 h with 5  $\mu$ g/ml denatured collagen (70 °C, 30 min) and blocked with 3% heat-inactivated FBS in DPBS for 2 h at room temperature. Specific binding was detected using HRP-conjugated anti-mouse immunoglobulin kappa light chain antibody (clone 187.1; Southern Biotech) and ABTS (Roche) as substrate. Absorbance at 405 nm was measured with a Synergy-2 (BioTek Instruments). (B) Calculated relative stability profiles for the triple-helical peptides bound by ACC1. The binding core site covering two triplets (6 amino acids) is shown in red. 13, CII121-144; 21, CII241-264; 43, CII571-591; 66, CII916-939; 67, CII931-954; ptm15/ptm16, C1-T-CIT365; ptm35/36, F4-T-CIT933.



Supplementary Figure 8. Comparison of the peptide binding paratopes of ACC1, ACC4, CIIC1 and M2139. The respective Fab is shown in surface representation. The CDR loops of the heavy chain are colored yellow (H1), orange (H2) and red (H3), those of the light chain cyan (L1), marine (L2), and dark blue (L3). The cartoon representation of the C1-CIT365-L peptide bound to the  $ACC1_{Fab}$  is shown in dark green (A), and that of the C1Cit1 peptide bound to the  $ACC4_{Fab}$  in magenta (B). The cartoon representation of the triple-helical C1 peptide bound to the CIIC1<sub>Fab</sub> in shown in magenta (C) and that of the triple-helical J1 peptide bound to the M2139<sub>Fab</sub> in pink (D).

## Supplementary Table 1. Synthetic CII peptides used in both Luminex assay (cyclic pepties) and SPR (triple-helical peptides) analysis.

All triple-helical peptides (107) were synthesized with 5 GPO repeats at both ends to facilitate the selfassembly of triple-helical strands. There is no lysine knot on these triple helical peptides. A biotin moiety is added to the N terminal GPO repeat. But for luminex assay, a new set of triple-helical peptide was synthesized as detailed in the text, and a lysine knot as shown in Figure 1A was also added. As for 54 cyclic CII peptides, two Cys residues were added to both ends and synthesized as cyclic peptide. As for the corresponding control peptides, citrulline (X) is replaced with arginine. O represents hydroxylproline; X represents citrulline.

| Name                   | Conformation                      | Sequence                    |  |  |  |  |
|------------------------|-----------------------------------|-----------------------------|--|--|--|--|
| CII_LT_1               | triple-helical(self-<br>assembly) | GPKGPOGPQGPAGEQGPRGDRGDK    |  |  |  |  |
| CII_LT_2               | triple-helical(self-<br>assembly) | GPRGDRGDKGEKGAOGPRGRDGEO    |  |  |  |  |
| CII_LT_3               | triple-helical(self-<br>assembly) | GPRGRDGEOGTOGNOGPO          |  |  |  |  |
| CII_LT_4               | triple-helical(self-<br>assembly) | GLGGNFAAQMAGGFDEKAGGAQLGVMQ |  |  |  |  |
| CII_LT_5               | triple-helical(self-<br>assembly) | GPMGPMGPRGPOGPAGAOGPQGFQ    |  |  |  |  |
| CII_LT_6               | triple-helical(self-<br>assembly) | GAOGPQGFQGNOGEOGEOGVSGPM    |  |  |  |  |
| CII_LT_7               | triple-helical(self-<br>assembly) | GEOGVSGPMGPRGPOGPOGKOGDD    |  |  |  |  |
| CII_LT_8               | triple-helical(self-<br>assembly) | GKOGDDGEAGKOGKAGERGPO       |  |  |  |  |
| CII_LT_9               | triple-helical(self-<br>assembly) | GKAGERGPOGPQGARGFOGTOGLO    |  |  |  |  |
| CII_LT_10              | triple-helical(self-<br>assembly) | GFOGTOGLOGVKGHRGYOGLDGAK    |  |  |  |  |
| CII_LT_11              | triple-helical(self-<br>assembly) | GYOGLDGAKGEAGAOGVKGESGSO    |  |  |  |  |
| CII_LT_12              | triple-helical(self-<br>assembly) | GVKGESGSOGENGSOGPMGPRGLO    |  |  |  |  |
| CII_LT_E41_R-R-R       | triple-helical(self-<br>assembly) | GPMGPRGLOGERGRTGPAGAAGAR    |  |  |  |  |
| CII_LT_14              | triple-helical(self-<br>assembly) | GPAGAAGARGNDGQOGPAGPOGPV    |  |  |  |  |
| CII_LT_15              | triple-helical(self-<br>assembly) | GPAGPOGPVGPAGGOGFOGAOGAK    |  |  |  |  |
| CII_LT_(TD1)_R-<br>(R) | triple-helical(self-<br>assembly) | GFOGAOGAKGEAGPTGARGPEGAQ    |  |  |  |  |
| CII_LT_TD1_R-R         | triple-helical(self-<br>assembly) | GARGPEGAQGPRGEOGTOGSOGPA    |  |  |  |  |

| CII_LT_E17       | triple-helical(self-<br>assembly) | GTOGSOGPAGASGNOGTDGIOGAK         |
|------------------|-----------------------------------|----------------------------------|
| CII_LT_19        | triple-helical(self-<br>assembly) | GTDGIOGAKGSAGAOGIAGAOGFO         |
| CII_LT_20        | triple-helical(self-<br>assembly) | GIAGAOGFOGPRGPOGPQGATGPL         |
| CII_LT_21        | triple-helical(self-<br>assembly) | GPQGATGPLGPKGQTGEOGIAGFK         |
| CII_LT_T         | triple-helical(self-<br>assembly) | GEOGIAGFKGEQGPKGEOGPAGPQ         |
| CII_LT_23        | triple-helical(self-<br>assembly) | GEOGPAGPQGAOGPAGEEGKRGAR         |
| CII_LT_24        | triple-helical(self-<br>assembly) | GEEGKRGARGEOGGVGPIGPOGER         |
| CII_LT_25        | triple-helical(self-<br>assembly) | GPIGPOGERGAOGNRGFOGQDGLA         |
| CII_LT_26        | triple-helical(self-<br>assembly) | GFOGQDGLAGPKGAOGERGPSGLA         |
| CII_LT_27        | triple-helical(self-<br>assembly) | GERGPSGLAGPKGANGDOGROGEO         |
| CII_LT_C1_R-R    | triple-helical(self-<br>assembly) | GDOGROGEOGLO <u>GARGLTGROGDA</u> |
| CII_LT_C1_R-R wP | triple-helical(self-<br>assembly) | GDPGRPGEPGLP <u>GARGLTGRPGDA</u> |
| CII_L_C1_R-R     | triple-helical(self-<br>assembly) | GDOGROGEOGLO <u>GARGLTGROGDA</u> |
| CII_L_C1_R-R wP  | triple-helical(self-<br>assembly) | GDPGRPGEPGLP <u>GARGLTGRPGDA</u> |
| CII_LT_TD8       | triple-helical(self-<br>assembly) | GLTGROGDAGPQGKVGPSGAOGED         |
| CII_LT_30        | triple-helical(self-<br>assembly) | GPSGAOGEDGROGPOGPQGARGQO         |
| CII_LT_31        | triple-helical(self-<br>assembly) | GPQGARGQOGVMGFOGPKGANGEO         |
| CII_LT_32        | triple-helical(self-<br>assembly) | GPKGANGEOGKAGEKGLOGAOGLR         |
| CII_LT_33        | triple-helical(self-<br>assembly) | GLOGAOGLRGLOGKDGETGAAGPO         |
| CII_LT_34        | triple-helical(self-<br>assembly) | GETGAAGPOGPAGPAGERGEQGAO         |
| CII_LT_35        | triple-helical(self-<br>assembly) | GERGEQGAOGPSGFQGLO               |
| CII_LT_36        | triple-helical(self-<br>assembly) | GLOGPOGPOGEGGKOGDQGVOGEA         |
| CII_LT_U1_R-R    | triple-helical(self-<br>assembly) | GDQGVOGEAGAOGLVGPRGERGFO         |
| CII_LT_38        | triple-helical(self-<br>assembly) | GPRGERGFOGERGSOGAQGLQGPR         |
| CII_LT_39        | triple-helical(self-<br>assembly) | GAQGLQGPRGLOGTOGTDGPKGAS         |
| CII_LT_40        | triple-helical(self-<br>assembly) | GTDGPKGASGPAGPOGAQGPOGLQ         |
| CII_LT_J1_R      | triple-helical(self-<br>assembly) | GAQGPOGLQGMOGERGAAGIAGPK         |

| CII_LT_J1_(R)           | triple-helical(self-<br>assembly) | GAAGIAGPKGDRGDVGEKGPEGAO |
|-------------------------|-----------------------------------|--------------------------|
| CII_LT_43               | triple-helical(self-<br>assembly) | GEKGPEGAOGKDGGRGLTGPIGPO |
| CII_LT_44               | triple-helical(self-<br>assembly) | GLTGPIGPOGPAGANGEKGEVGPO |
| CII_LT_45               | triple-helical(self-<br>assembly) | GEKGEVGPOGPAGSAGARGAOGER |
| CII_LT_46               | triple-helical(self-<br>assembly) | GARGAOGERGETGPOGPAGFAGPO |
| CII_LT_47               | triple-helical(self-<br>assembly) | GPAGFAGPOGADGQOGAKGEQGEA |
| CII_LT_48               | triple-helical(self-<br>assembly) | GAKGEQGEAGQKGDAGAOGPQGPS |
| CII_LT_49               | triple-helical(self-<br>assembly) | GAOGPQGPSGAOGPQGPTGVTGPK |
| CII_LT_D3_R             | triple-helical(self-<br>assembly) | GPTGVTGPKGARGAQGPOGATGFO |
| CII_LT_D3_(R)           | triple-helical(self-<br>assembly) | GPOGATGFOGAAGRVGPOGSNGNO |
| CII_LT_52               | triple-helical(self-<br>assembly) | GPOGSNGNOGPOGPOGPSGKDGPK |
| CII_LT_53               | triple-helical(self-<br>assembly) | GPSGKDGPKGARGDSGPOGRAGEO |
| CII_LT_54               | triple-helical(self-<br>assembly) | GPOGRAGEOGLQGPAGPOGEKGEO |
| CII_LT_55               | triple-helical(self-<br>assembly) | GPOGEKGEOGDDGPSGAEGPOGPQ |
| CII_LT_E10_R            | triple-helical(self-<br>assembly) | GAEGPOGPQGLAGQRGIVGLOGQR |
| CII_LT_57               | triple-helical(self-<br>assembly) | GIVGLOGQRGERGFOGLOGPSGEO |
| CII_LT_58               | triple-helical(self-<br>assembly) | GLOGPSGEOGKQGAOGASGDRGPO |
| CII_LT_59               | triple-helical(self-<br>assembly) | GASGDRGPOGPVGPOGLTGPAGEO |
| CII_LT_60               | triple-helical(self-<br>assembly) | GLTGPAGEOGREGSOGADGPOGRD |
| CII_LT_61               | triple-helical(self-<br>assembly) | GADGPOGRDGAAGVKGDRGETGAV |
| CII_LT_62               | triple-helical(self-<br>assembly) | GDRGETGAVGAOGAOGPOGSOGPA |
| CII_LT_63               | triple-helical(self-<br>assembly) | GPOGSOGPAGPTGKQGDRGEAGAQ |
| CII_LT_64               | triple-helical(self-<br>assembly) | GDRGEAGAQGPMGPSGPAGARGIQ |
| CII_LT_65               | triple-helical(self-<br>assembly) | GPAGARGIQGPQGPRGDKGEAGEO |
| CII_LT_F4_R-R           | triple-helical(self-<br>assembly) | GDKGEAGEOGERGLKGHRGFTGLQ |
| CII_L_F4_R-R            | triple-helical(self-<br>assembly) | GDKGEAGEOGERGLKGHRGFTGLQ |
| CII_LT_F4_R-R (no knot) | triple-helical(self-<br>assembly) | GDKGEAGEOGERGLKGHRGFTGLQ |

| CII_LT_(F4)_(R)-R       | triple-helical(self-<br>assembly) | GHRGFTGLQGLOGPOGPSGDQGAS      |  |  |  |  |
|-------------------------|-----------------------------------|-------------------------------|--|--|--|--|
| CII_LT_68               | triple-helical(self-<br>assembly) | GPSGDQGASGPAGPSGPRGPOGPV      |  |  |  |  |
| CII_LT_69               | triple-helical(self-<br>assembly) | GPRGPOGPVGPSGKDGANGIOGPI      |  |  |  |  |
| CII_LT_70               | triple-helical(self-<br>assembly) | GANGIOGPIGPOGPRGRSGETGPAGPOGN |  |  |  |  |
| CII_LT_1_CIT            | triple-helical(self-<br>assembly) | GKAGERGPOGPEGARGFOGTOGLO      |  |  |  |  |
| CII_LT_E41_R-<br>CIT-R  | triple-helical(self-<br>assembly) | GPMGPRGLOGECITGRTGPAGAAGAR    |  |  |  |  |
| CII_LT_T_E              | triple-helical(self-<br>assembly) | GEOGIAGFKGEEGPKGEOGPAGPQ      |  |  |  |  |
| CII_LT_T                | triple-helical(self-<br>assembly) | GEOGIAGFKGEQGPKGEOGPAGPQ      |  |  |  |  |
| CII_LT_5_CIT            | triple-helical(self-<br>assembly) | GEEGKRGACITGEOGGVGPIGPOGER    |  |  |  |  |
| CII_LT_6_CIT            | triple-helical(self-<br>assembly) | GFOGQDGLAGPKGAOGECITGPSGLA    |  |  |  |  |
| CII_LT_7_CIT            | triple-helical(self-<br>assembly) | GECITGPSGLAGPKGANGDOGROGEO    |  |  |  |  |
| CII_LT_C1_CIT-R         | triple-helical(self-<br>assembly) | GDOGROGEOGLOGACITGLTGROGDA    |  |  |  |  |
| CII_LT_C1_CIT-<br>CIT   | triple-helical(self-<br>assembly) | GDOGROGEOGLOGACITGLTGCITOGDA  |  |  |  |  |
| CII_LT_C1_R-CIT         | triple-helical(self-<br>assembly) | GDOGROGEOGLOGARGLTGCITOGDA    |  |  |  |  |
| CII_LT_C1_R-R           | triple-helical(self-<br>assembly) | GLOGARGLTGROGDAGPQGKVGPS      |  |  |  |  |
| CII_LT_C1_CIT-R         | triple-helical(self-<br>assembly) | GLOGACITGLTGROGDAGPQGKVGPS    |  |  |  |  |
| CII_LT_C1_CIT-<br>CIT   | triple-helical(self-<br>assembly) | GLOGACITGLTGCITOGDAGPQGKVGPS  |  |  |  |  |
| CII_LT_C1_CIT-<br>CIT-E | triple-helical(self-<br>assembly) | GLOGACITGLTGCITOGDAGPEGKVGPS  |  |  |  |  |
| CII_LT_C1_R-CIT         | triple-helical(self-<br>assembly) | GLOGARGLTGCITOGDAGPQGKVGPS    |  |  |  |  |
| CII_LT_C1_R-CIT-<br>E   | triple-helical(self-<br>assembly) | GLOGARGLTGCITOGDAGPEGKVGPS    |  |  |  |  |

| CII_LT_C1_CIT-R-<br>E     | triple-helical(self-<br>assembly) | GLOGACITGLTGROGDAGPEGKVGPS |
|---------------------------|-----------------------------------|----------------------------|
| CII_LT_(C1)_(R)-R         | triple-helical(self-<br>assembly) | GLTGCITOGDAGPQGKVGPSGAOGED |
| CII_LT_(C1)_(R)-R-<br>E   | triple-helical(self-<br>assembly) | GLTGROGDAGPEGKVGPSGAOGED   |
| CII_LT_(C1)_(R)-<br>CIT-E | triple-helical(self-<br>assembly) | GLTGCITOGDAGPEGKVGPSGAOGED |
| CII_LT_21_CIT             | triple-helical(self-<br>assembly) | GPRGERGFOGECITGSOGAQGLQGPR |
| CII_LT_22_CIT             | triple-helical(self-<br>assembly) | GEKGEVGPOGPAGSAGACITGAOGER |
| CII_LT_23_CIT             | triple-helical(self-<br>assembly) | GACITGAOGERGETGPOGPAGFAGPO |
| CII_LT_D3_R-E             | triple-helical(self-<br>assembly) | GPTGVTGPKGARGAEGPOGATGFO   |
| CII_LT_E10_CIT-Q          | triple-helical(self-<br>assembly) | GAEGPOGPQGLAGQCITGIVGLOGQR |
| CII_LT_E10_CIT-E          | triple-helical(self-<br>assembly) | GAEGPOGPQGLAGQCITGIVGLOGER |
| CII_LT_E10_R-E            | triple-helical(self-<br>assembly) | GAEGPOGPQGLAGQRGIVGLOGER   |
| CII_LT_E10_R-Q            | triple-helical(self-<br>assembly) | GPQGLAGQRGIVGLOGQRGERGFO   |
| CII_LT_E10_CIT-Q          | triple-helical(self-<br>assembly) | GPQGLAGQCITGIVGLOGQRGERGFO |
| CII_LT_E10_CIT-E          | triple-helical(self-<br>assembly) | GPQGLAGQCITGIVGLOGERGERGFO |
| CII_LT_E10_R-E            | triple-helical(self-<br>assembly) | GPQGLAGQRGIVGLOGERGERGFO   |
| CII_LT_32_E               | triple-helical(self-<br>assembly) | GIVGLOGERGERGFOGLOGPSGEO   |
| CII_LT_33_CIT             | triple-helical(self-<br>assembly) | GADGPOGCITDGAAGVKGDRGETGAV |
| CII_LT_34_CIT             | triple-helical(self-<br>assembly) | GPOGSOGPAGPTGKQGDCITGEAGAQ |
| CII_LT_F4_R-CIT           | triple-helical(self-<br>assembly) | GDKGEAGEOGERGLKGHCITGFTGLQ |

| CII_LT_F4_CIT-<br>CIT       | triple-helical(self-<br>assembly) | GDKGEAGEOGECITGLKGHCITGFTGLQ  |
|-----------------------------|-----------------------------------|-------------------------------|
| CII_LT_F4_CIT-R             | triple-helical(self-<br>assembly) | GDKGEAGEOGECITGLKGHRGFTGLQ    |
| CII_C_1_CIT                 | cyclic (via disulphide<br>bond)   | Biotin-Ahx-CPMGPMGPXGPPGPAGCA |
| CII_C_2_CIT                 | cyclic (via disulphide<br>bond)   | Biotin-Ahx-CVSGPMGPXGPPGPPGCA |
| CII_C_3_CIT                 | cyclic (via disulphide<br>bond)   | Biotin-Ahx-CKPGKAGEXGPPGPQGCA |
| CII_C_4_CIT                 | cyclic (via disulphide<br>bond)   | Biotin-Ahx-CPPGPQGAXGFPGTPGCA |
| CII_C_5_CIT                 | cyclic (via disulphide<br>bond)   | Biotin-Ahx-CLPGVKGHXGYPGLDGCA |
| CII_C_(E41)_[CIT]-<br>R-(R) | cyclic (via disulphide<br>bond)   | Biotin-Ahx-CSPGPMGPXGLPGERGCA |
| CII_C_(E41)_R-<br>[CIT]-R   | cyclic (via disulphide<br>bond)   | Biotin-Ahx-CPRGLPGEXGRTGPAGCA |
| CII_C_(E41)_(R)-R-<br>[CIT] | cyclic (via disulphide bond)      | Biotin-Ahx-CGLPGERGXTGPAGAACA |
| CII_C_9_CIT                 | cyclic (via disulphide bond)      | Biotin-Ahx-CPAGAAGAXGNDGQPGCA |
| CII_C_(TD1)_[CIT]<br>-(R)   | cyclic (via disulphide<br>bond)   | Biotin-Ahx-CEAGPTGAXGPEGAQGCA |
| CII_C_(TD1)_(R)-<br>[CIT]   | cyclic (via disulphide<br>bond)   | Biotin-Ahx-CPEGAQGPXGEPGTPGCA |
| CII_C_12_CIT                | cyclic (via disulphide<br>bond)   | Biotin-Ahx-CAPGFPGPXGPPGPQGCA |
| CII_C_13_CIT                | cyclic (via disulphide<br>bond)   | Biotin-Ahx-CPAGEEGKXGARGEPGCA |
| CII_C_14_CIT                | cyclic (via disulphide<br>bond)   | Biotin-Ahx-CEEGKRGAXGEPGGVGCA |
| CII_C_15_CIT                | cyclic (via disulphide<br>bond)   | Biotin-Ahx-CPIGPPGEXGAPGNRGCA |
| CII_C_16_CIT                | cyclic (via disulphide<br>bond)   | Biotin-Ahx-CERGAPGNXGFPGQDGCA |
| CII_C_17_CIT                | cyclic (via disulphide<br>bond)   | Biotin-Ahx-CPKGAPGEXGPSGLAGCA |
| CII_C_18_CIT                | cyclic (via disulphide<br>bond)   | Biotin-Ahx-CGANGDPGXPGEPGLPCA |
| CII_C_(C1)_[CIT]-<br>R      | cyclic (via disulphide<br>bond)   | Biotin-Ahx-CEPGLPGAXGLTGRPGCA |
| CII_C_C1_R-[CIT]            | cyclic (via disulphide<br>bond)   | Biotin-Ahx-CGARGLTGXPGDAGPQCA |
| CII_C_21_CIT                | cyclic (via disulphide<br>bond)   | Biotin-Ahx-CGAPGEDGXPGPPGPQCA |
| CII_C_22_CIT                | cyclic (via disulphide<br>bond)   | Biotin-Ahx-CPPGPQGAXGQPGVMGCA |
| CII_C_23_CIT                | cyclic (via disulphide<br>bond)   | Biotin-Ahx-CLPGAPGLXGLPGKDGCA |

| CII_C_24_CIT       | cyclic (via disulphide bond)    | Biotin-Ahx-CPAGPAGEXGEQGAPGCA |
|--------------------|---------------------------------|-------------------------------|
| CII_C_U1_[CIT]-R   | cyclic (via disulphide<br>bond) | Biotin-Ahx-CAPGLVGPXGERGFPGCA |
| CII_C_U1_R-[CIT]   | cyclic (via disulphide<br>bond) | Biotin-Ahx-CLVGPRGEXGFPGERGCA |
| CII_C_27_CIT       | cyclic (via disulphide<br>bond) | Biotin-Ahx-CGRGFPGEXGSPGAQGCA |
| CII_C_28_CIT       | cyclic (via disulphide<br>bond) | Biotin-Ahx-CAQGLQGPXGLPGTPGCA |
| CII_C_(J1)_CIT     | cyclic (via disulphide<br>bond) | Biotin-Ahx-CLQGMPGEXGAAGIAGCA |
| CII_C_30_CIT       | cyclic (via disulphide<br>bond) | Biotin-Ahx-CIAGPKGDXGDVGEKGCA |
| CII_C_31_CIT       | cyclic (via disulphide<br>bond) | Biotin-Ahx-CAPGKDGGXGLTGPIGCA |
| CII_C_32_CIT       | cyclic (via disulphide<br>bond) | Biotin-Ahx-CPAGSAGAXGAPGERGCA |
| CII_C_33_CIT       | cyclic (via disulphide<br>bond) | Biotin-Ahx-CARGAPGEXGETGPPGCA |
| CII_C_(D3)_CIT     | cyclic (via disulphide<br>bond) | Biotin-Ahx-CVTGPKGAXGAQGPPGCA |
| CII_C_35_CIT       | cyclic (via disulphide<br>bond) | Biotin-Ahx-CGFPGAAGXVGPPGSNCA |
| CII_C_36_CIT       | cyclic (via disulphide<br>bond) | Biotin-Ahx-CKDGPKGAXGDSGPPGCA |
| CII_C_37_CIT       | cyclic (via disulphide<br>bond) | Biotin-Ahx-CGDSGPPGXAGEPGLQCA |
| CII_C_E10_CIT      | cyclic (via disulphide<br>bond) | Biotin-Ahx-CPQGLAGQXGIVGLPGCA |
| CII_C_39_CIT       | cyclic (via disulphide<br>bond) | Biotin-Ahx-CIVGLPGQXGERGFPGCA |
| CII_C_40_CIT       | cyclic (via disulphide<br>bond) | Biotin-Ahx-CLPGQRGEXGFPGLPGCA |
| CII_C_41_CIT       | cyclic (via disulphide<br>bond) | Biotin-Ahx-CAPGASGDXGPPGPVGCA |
| CII_C_42_CIT       | cyclic (via disulphide<br>bond) | Biotin-Ahx-CGPAGEPGXEGSPGADCA |
| CII_C_43_CIT       | cyclic (via disulphide<br>bond) | Biotin-Ahx-CGADGPPGXDGAAGVKCA |
| CII_C_44_CIT       | cyclic (via disulphide<br>bond) | Biotin-Ahx-CAAGVKGDXGETGAVGCA |
| CII_C_45_CIT       | cyclic (via disulphide<br>bond) | Biotin-Ahx-CPTGKQGDXGEAGAQGCA |
| CII_C_46_CIT       | cyclic (via disulphide<br>bond) | Biotin-Ahx-CPSGPAGAXGIQGPQGCA |
| CII_C_47_CIT       | cyclic (via disulphide<br>bond) | Biotin-Ahx-CIQGPQGPXGDKGEAGCA |
| CII_C_(F4)_[CIT]-R | cyclic (via disulphide<br>bond) | Biotin-Ahx-CEAGEPGEXGLKGHRGCA |
| CII_C_F4_R-[CIT]   | cyclic (via disulphide<br>bond) | Biotin-Ahx-CERGLKGHXGFTGLQGCA |
| CII_C_50_CIT       | cyclic (via disulphide<br>bond) | Biotin-Ahx-CPAGPSGPXGPPGPVGCA |

| CII_C_51_CIT | cyclic (via disulphide bond) | Biotin-Ahx-CPIGPPGPXGRSGETGCA |
|--------------|------------------------------|-------------------------------|
| CII_C_52_CIT | cyclic (via disulphide bond) | Biotin-Ahx-CGPPGPRGXSGETGPACA |
| CII_C_53_CIT | cyclic (via disulphide bond) | Biotin-Ahx-CAFAGLGPXEKGPDPLCA |
| CII_C_54_CIT | cyclic (via disulphide bond) | Biotin-Ahx-CPDPLQYMXADQAAGGCA |

## Supplementary Table 2. The binding value of peptides for ACC1, ACC3, ACC4, CIIC1 and GB8 in Luminex assay.

All the sequences of cyclic CII peptides are the same as those shown in Table S1. While a lysine knot as shown in Figure 1A was added to all the triple-helical CII peptides used in Luminex assay. X represents citrulline; O represents hydroxylproline. The likely binding motif for ACC1 is highlighted in red. MFI, median fluorescence intensity.

| Peptide ID   | Sequence                    | Structure | ACC1 | ACC3   | ACC4   | CIIC1 | GB8    |
|--------------|-----------------------------|-----------|------|--------|--------|-------|--------|
| CII-C-1-Cit  | CPMGPMGPXGPPGPAGCA          | cyclic    | 45.5 | 861    | 20.5   | 22    | 34     |
| CII-C-1-R    | CPMGPMGPRGPPGPAGCA          | cyclic    | 38.5 | 21     | 18     | 20    | 36     |
| CII-C-10-Cit | CEAGPTGAXGPEGAQGCA          | cyclic    | 45   | 2208.5 | 15.5   | 17    | 33     |
| CII-C-10-R   | CEAGPTGARGPEGAQGCA          | cyclic    | 39   | 18     | 18     | 17    | 29     |
| CII-C-11-Cit | CPEGAQGPXGEPGTPGCA          | cyclic    | 51   | 26     | 19     | 21    | 33     |
| CII-C-11-R   | CPEGAQGPRGEPGTPGCA          | cyclic    | 51   | 22     | 21     | 18.5  | 35     |
| CII-C-12-Cit | CAPGFPGPXGPPGPQGCA          | cyclic    | 48   | 48     | 19     | 20    | 37     |
| CII-C-12-R   | CAPGFPGPRGPPGPQGCA          | cyclic    | 40   | 18     | 19     | 18    | 42     |
| CII-C-13-Cit | CPAGEEGKXGARGEPGCA          | cyclic    | 53   | 24     | 19     | 18    | 31     |
| CII-C-13-R   | CPAGEEGKRGARGEPGCA          | cyclic    | 46   | 26     | 21.5   | 22    | 36     |
| CII-C-14-Cit | CEEGKRGAXGEPGGVGCA          | cyclic    | 38   | 25.5   | 20     | 20    | 33     |
| CII-C-14-R   | CEEGKRGARGEPGGVGCA          | cyclic    | 34   | 21     | 18     | 20    | 32     |
| CII-C-15-Cit | CPIGPPGEXGAPGNRGCA          | cyclic    | 36   | 24     | 20     | 23    | 309    |
| CII-C-15-R   | CPIGPPGERGAPGNRGCA          | cyclic    | 28   | 15     | 12     | 15    | 3865   |
| CII-C-16-Cit | CERGAPGNXGFPGQDGCA          | cyclic    | 46.5 | 32     | 23     | 21    | 63     |
| CII-C-16-R   | CERGAPGNRGFPGQDGCA          | cyclic    | 36   | 19     | 15     | 17    | 398    |
| CII-C-17-Cit | CPKGAPGEXGPSGLAGCA          | cyclic    | 43   | 17     | 16     | 14    | 55     |
| CII-C-17-R   | CPKGAPGERGPSGLAGCA          | cyclic    | 38   | 17     | 16.5   | 15    | 1270   |
| CII-C-18-Cit | CGANGDPGXPGEPGLPCA          | cyclic    | 80   | 23     | 13     | 17    | 31     |
| CII-C-18-R   | CGANGDPGRPGEPGLPCA          | cyclic    | 76   | 22     | 18     | 18    | 34     |
| CII-C-19-Cit | CEPGLPGAXGLTGRPGCA          | cyclic    | 1524 | 73     | 5422.5 | 19    | 169    |
| CII-C-19-R   | CEPGLPGA <b>RGLTG</b> RPGCA | cyclic    | 2857 | 187    | 20     | 20    | 2081.5 |
| CII-C-20-Cit | CGARGLTGXPGDAGPQCA          | cyclic    | 96   | 27     | 21     | 22    | 33     |
| CII-C-20-R   | CGARGLTGRPGDAGPQCA          | cyclic    | 53   | 25     | 27     | 25    | 35     |
| CII-C-21-Cit | CGAPGEDGXPGPPGPQCA          | cyclic    | 64.5 | 25     | 17     | 16    | 37.5   |
| CII-C-21-R   | CGAPGEDGRPGPPGPQCA          | cyclic    | 47   | 21     | 18     | 17    | 29     |
| CII-C-22-Cit | CPPGPQGAXGQPGVMGCA          | cyclic    | 45   | 2344.5 | 12     | 12    | 24     |
| CII-C-22-R   | CPPGPQGARGQPGVMGCA          | cyclic    | 38   | 23     | 21     | 17    | 30.5   |
| CII-C-23-Cit | CLPGAPGLXGLPGKDGCA          | cyclic    | 46   | 23     | 17     | 17    | 801    |
| CII-C-23-R   | CLPGAPGLRGLPGKDGCA          | cyclic    | 43   | 19     | 18     | 18    | 3250   |
| CII-C-24-Cit | CPAGPAGEXGEQGAPGCA          | cyclic    | 49   | 26     | 19     | 18    | 29     |
| CII-C-24-R   | CPAGPAGERGEQGAPGCA          | cyclic    | 36   | 21.5   | 21     | 18    | 33     |
| CII-C-25-Cit | CAPGLVGPXGERGFPGCA          | cyclic    | 47   | 28     | 22     | 20    | 34     |
| CII-C-25-R   | CAPGLVGPRGERGFPGCA          | cyclic    | 41   | 23     | 21     | 22    | 37     |
| CII-C-26-Cit | CLVGPRGEXGFPGERGCA          | cyclic    | 45   | 28     | 24     | 24    | 38     |
| CII-C-26-R   | CLVGPRGERGFPGERGCA          | cyclic    | 38   | 22.5   | 20     | 22    | 42     |
| CII-C-27-Cit | CGRGFPGEXGSPGAQGCA          | cyclic    | 50   | 24.5   | 22.5   | 24    | 42.5   |
|              |                             | 1         |      |        |        |       |        |

| CII-C-27-R   | CGRGFPGERGSPGAQGCA                | cyclic | 43     | 20     | 18   | 19   | 40   |
|--------------|-----------------------------------|--------|--------|--------|------|------|------|
| CII-C-28-Cit | CAQGLQGPXGLPGTPGCA                | cyclic | 55.5   | 36     | 21   | 20   | 41.5 |
| CII-C-28-R   | CAQGLQGPRGLPGTPGCA                | cyclic | 46.5   | 26     | 22   | 19.5 | 32   |
| CII-C-29-Cit | CLQGMPGEXGAAGIAGCA                | cyclic | 59     | 18     | 14   | 13   | 29   |
| CII-C-29-R   | CLQGMPGERGAAGIAGCA                | cyclic | 53     | 20     | 15   | 14   | 184  |
| CII-C-2-Cit  | CVSGPMGPXGPPGPPGCA                | cyclic | 45.5   | 989    | 23   | 20   | 35   |
| CII-C-2-R    | CVSGPMGPRGPPGPPGCA                | cyclic | 39     | 26     | 19   | 23   | 40.5 |
| CII-C-30-Cit | CIAGPKGDXGDVGEKGCA                | cyclic | 35     | 19     | 17   | 15   | 28   |
| CII-C-30-R   | CIAGPKGDRGDVGEKGCA                | cyclic | 33     | 14     | 13.5 | 13   | 23   |
| CII-C-31-Cit | CAPGKDGG <mark>XGLTG</mark> PIGCA | cyclic | 6843.5 | 1290   | 17.5 | 18   | 42.5 |
| CII-C-31-R   | CAPGKDGG <b>RGLTG</b> PIGCA       | cyclic | 6830   | 1725.5 | 16   | 15   | 46   |
| CII-C-32-Cit | CPAGSAGAXGAPGERGCA                | cyclic | 52     | 81     | 21.5 | 19   | 351  |
| CII-C-32-R   | CPAGSAGARGAPGERGCA                | cyclic | 43     | 21     | 21   | 19   | 137  |
| CII-C-33-Cit | CARGAPGEXGETGPPGCA                | cyclic | 1024.5 | 29     | 20.5 | 19   | 5223 |
| CII-C-33-R   | CARGAPGE <b>RGETG</b> PPGCA       | cyclic | 3531.5 | 152    | 19   | 17   | 5761 |
| CII-C-34-Cit | CVTGPKGAXGAQGPPGCA                | cyclic | 37     | 1243   | 18   | 18   | 61   |
| CII-C-34-R   | CVTGPKGARGAQGPPGCA                | cyclic | 188    | 26.5   | 17   | 16.5 | 86   |
| CII-C-35-Cit | CGFPGAAGXVGPPGSNCA                | cyclic | 52     | 23     | 16   | 17   | 31   |
| CII-C-35-R   | CGFPGAAGRVGPPGSNCA                | cyclic | 43     | 17     | 14   | 13   | 31   |
| CII-C-36-Cit | CKDGPKGAXGDSGPPGCA                | cyclic | 129.5  | 1168   | 13   | 13   | 25.5 |
| CII-C-36-R   | CKDGPKGARGDSGPPGCA                | cyclic | 1130.5 | 37     | 19   | 17.5 | 32   |
| CII-C-37-Cit | CGDSGPPGXAGEPGLQCA                | cyclic | 54     | 24     | 20   | 20   | 33   |
| CII-C-37-R   | CGDSGPPGRAGEPGLQCA                | cyclic | 46     | 22.5   | 17   | 19.5 | 35   |
| CII-C-38-Cit | CPQGLAGQXGIVGLPGCA                | cyclic | 48     | 24     | 19   | 19   | 31   |
| CII-C-38-R   | CPQGLAGQRGIVGLPGCA                | cyclic | 45     | 23.5   | 25   | 22   | 32   |
| CII-C-39-Cit | CIVGLPGQXGERGFPGCA                | cyclic | 42     | 22     | 21.5 | 20   | 32   |
| CII-C-39-R   | CIVGLPGQRGERGFPGCA                | cyclic | 38     | 20     | 21   | 20   | 41   |
| CII-C-3-Cit  | CKPGKAGEXGPPGPQGCA                | cyclic | 36.5   | 23     | 24   | 22   | 35   |
| CII-C-3-R    | CKPGKAGERGPPGPQGCA                | cyclic | 36     | 25     | 21   | 20.5 | 37   |
| CII-C-40-Cit | CLPGQRGEXGFPGLPGCA                | cyclic | 48     | 27     | 23   | 26   | 38.5 |
| CII-C-40-R   | CLPGQRGERGFPGLPGCA                | cyclic | 51     | 26     | 23   | 23.5 | 42   |
| CII-C-41-Cit | CAPGASGDXGPPGPVGCA                | cyclic | 49     | 20     | 17   | 17.5 | 35.5 |
| CII-C-41-R   | CAPGASGDRGPPGPVGCA                | cyclic | 48     | 22     | 17   | 18   | 30   |
| CII-C-42-Cit | CGPAGEPGXEGSPGADCA                | cyclic | 72     | 24.5   | 17   | 19   | 31.5 |
| CII-C-42-R   | CGPAGEPGREGSPGADCA                | cyclic | 63     | 20     | 19   | 15   | 34   |
| CII-C-43-cit | CGADGPPGXDGAAGVKCA                | cyclic | 49.5   | 25     | 20.5 | 20.5 | 33   |
| CII-C-44-Cit | CAAGVKGDXGETGAVGCA                | cyclic | 53     | 24     | 20.5 | 18   | 33   |
| CII-C-44-R   | CAAGVKGDRGETGAVGCA                | cyclic | 74     | 21     | 19   | 17   | 31   |
| CII-C-45-Cit | CPTGKQGDXGEAGAQGCA                | cyclic | 48.5   | 26     | 20   | 24   | 34   |
| CII-C-45-R   | CPTGKQGDRGEAGAQGCA                | cyclic | 43.5   | 24     | 19   | 19   | 28.5 |
| CII-C-46-Cit | CPSGPAGAXGIQGPQGCA                | cyclic | 47     | 2441   | 22   | 18   | 37   |
| CII-C-46-R   | CPSGPAGARGIQGPQGCA                | cyclic | 37     | 16     | 16   | 14   | 33   |
| CII-C-47-Cit | CIQGPQGPXGDKGEAGCA                | cyclic | 42     | 124    | 19   | 20   | 28   |
| CII-C-47-R   | CIQGPQGPRGDKGEAGCA                | cyclic | 38     | 21.5   | 26   | 19   | 28   |
| CII-C-48-Cit | CEAGEPGEXGLKGHRGCA                | cyclic | 36     | 23     | 17   | 18.5 | 31   |

| CII-C-48-R       | CEAGEPGERGLKGHRGCA                                 | cyclic                                | 30     | 18    | 14   | 16   | 25     |
|------------------|----------------------------------------------------|---------------------------------------|--------|-------|------|------|--------|
| CII-C-49-Cit     | CERGLKGH <mark>XGFTG</mark> LQGCA                  | cyclic                                | 4145   | 385   | 59   | 19   | 35.5   |
| CII-C-49-R       | CERGLKGH <b>RGFTG</b> LQGCA                        | cyclic                                | 5169   | 696   | 22   | 18   | 42     |
| CII-C-4-Cit      | CPPGPQGAXGFPGTPGCA                                 | cyclic                                | 50     | 2252  | 18   | 21   | 34     |
| CII-C-4-R        | CPPGPQGARGFPGTPGCA                                 | cyclic                                | 321    | 27    | 16   | 16   | 1238   |
| CII-C-50-cit     | CPAGPSGPXGPPGPVGCA                                 | cyclic                                | 39     | 450   | 21   | 19   | 25     |
| CII-C-50-R       | CPAGPSGPRGPPGPVGCA                                 | cyclic                                | 35     | 17    | 15.5 | 15   | 28     |
| CII-C-51-cit     | CPIGPPGPXGRSGETGCA                                 | cyclic                                | 41     | 176   | 18   | 18   | 29     |
| CII-C-51-R       | CPIGPPGPRGRSGETGCA                                 | cyclic                                | 35.5   | 17    | 18   | 16   | 32     |
| CII-C-52-cit     | CGPPGPRGXSGETGPACA                                 | cyclic                                | 84     | 21    | 19   | 20   | 28     |
| CII-C-52-R       | CGPPGPRGRSGETGPACA                                 | cyclic                                | 50     | 22    | 22   | 19   | 29     |
| CII-C-53-cit     | CAFAGLGPXEKGPDPLCA                                 | cyclic                                | 45     | 20    | 18.5 | 18   | 24     |
| CII-C-53-R       | CAFAGLGPREKGPDPLCA                                 | cyclic                                | 49     | 21    | 18.5 | 20   | 30     |
| CII-C-54-cit     | CPDPLQYMXADQAAGGCA                                 | cyclic                                | 62     | 30    | 20   | 19   | 32.5   |
| CII-C-54-R       | CPDPLQYMRADQAAGGCA                                 | cyclic                                | 52     | 18    | 17   | 16   | 26     |
| CII-C-5-Cit      | CLPGVKGHXGYPGLDGCA                                 | cyclic                                | 62     | 34    | 17   | 17   | 38     |
| CII-C-5-R        | CLPGVKGHRGYPGLDGCA                                 | cyclic                                | 47     | 21    | 19   | 16   | 34     |
| CII-C-6-Cit      | CSPGPMGPXGLPGERGCA                                 | cyclic                                | 45     | 486   | 17   | 17   | 29     |
| CII-C-6-R        | CSPGPMGPRGLPGERGCA                                 | cyclic                                | 39     | 19    | 20   | 17   | 32.5   |
| CII-C-7-Cit      | CPRGLPGEXGRTGPAGCA                                 | cyclic                                | 4906   | 343   | 18   | 17   | 1858   |
| CII-C-7-R        | CPRGLPGERGRTGPAGCA                                 | cyclic                                | 5980   | 663   | 19   | 17   | 4963   |
| CII-C-8-Cit      | CGLPGE <b>RGXTG</b> PAGAACA                        | cyclic                                | 5985.5 | 853.5 | 20   | 20   | 868    |
| CII-C-8-R        | CGLPGE <b>RGRTG</b> PAGAACA                        | cyclic                                | 3520   | 291   | 22   | 21   | 1195   |
| CII-C-9-Cit      | CPAGAAGAXGNDGQPGCA                                 | cyclic                                | 42     | 137.5 | 16   | 16   | 28     |
| CII-C-9-R        | CPAGAAGARGNDGQPGCA                                 | cyclic                                | 35     | 20    | 13   | 14   | 30     |
| CII-T-C1-cit-cit | GDOGROGEOGLOGA <mark>XGLTG</mark> XOGDA            | triple-helical                        | 1641   | 60    | 62   | 23   | 98     |
| CII-T-C1-cit-R   | GDOGROGEOGLOGA <mark>XGLTG</mark> ROGDA            | triple-helical                        | 408    | 32    | 4454 | 21   | 120    |
| CII-T-C1-R-R     | GDOGROGEOGLOGA <mark>RGLTG</mark> ROGDA            | triple-helical                        | 752    | 54    | 30   | 352  | 1136.5 |
| CII-T-C1-R-cit   | GDOGROGEOGLOGA <mark>RGLTG</mark> XOGDA            | triple-helical                        | 5176.5 | 432   | 22   | 90   | 324    |
| CII-T-D3-cit     | GPTGVTGPKGARGAQGPOGATGFO                           | triple-helical                        | 63.5   | 419   | 25   | 24   | 54     |
| CII-T-D3-R       | GPTGVTGPKGAXGAQGP <b>O</b> GATGF <b>O</b>          | triple-helical                        | 58     | 20    | 21   | 21   | 38     |
| CII-T-E10-cit    | GAEGPOGPQGLAGQXGIVGLOGQR                           | triple-helical                        | 25     | 20    | 22   | 22   | 25     |
| CII-T-E10-R      | GAEGPOGPQGLAGQRGIVGLOGQR                           | triple-helical                        | 46     | 21.5  | 19.5 | 20   | 57.5   |
| CII-T-E17-R      | GTOGSOGPAGASGNOGTDGIOGAK                           | triple-helical                        | 28.5   | 18    | 15   | 15   | 42.5   |
| CII-T-F4-cit-cit | GDKGEAGEOGEXGLKGH <mark>XGFTG</mark> LQ            | triple-helical                        | 2906   | 117   | 19   | 21.5 | 26     |
| CII-T-F4-cit-R   | GDKGEAGE <b>O</b> GEXGLKGH <mark>RGFTG</mark> LQ   | triple-helical                        | 3644.5 | 245   | 20   | 18   | 27     |
| CII-T-F4-R       | GDKGEAGEOGERGLKGH <mark>RGFTG</mark> LQ            | triple-helical                        | 1107   | 56    | 22   | 19   | 28     |
| CII-T-F4-R-cit   | GDKGEAGE <b>O</b> GERGLKGH <mark>XGFTG</mark> LQ   | triple-helical                        | 1861   | 78    | 16   | 16.5 | 20     |
| CII-T-J1-cit     | GAQGPOGLQGMOGEXGAAGIAGPK                           | triple-helical                        | 30.5   | 4219  | 24   | 36   | 110    |
| CII-T-J1-R       | GAQGPOGLQGMOGERGAAGIAGPK                           | triple-helical                        | 29.5   | 1625  | 19   | 30   | 96     |
| CII-T-PC12-R     | GASGDRGPOGPVGPOGLTGPAGEO                           | triple-helical                        | 25     | 24    | 24   | 22   | 29     |
| CII-T-U1-cit-cit | GDQGV <b>O</b> GEAGA <b>O</b> GLVGPXGEXGF <b>O</b> | triple-helical                        | 23     | 21    | 18   | 18   | 18     |
| CII-T-U1-cit-R   | GDQGV <b>O</b> GEAGA <b>O</b> GLVGPXGERGF <b>O</b> | triple-helical                        | 29     | 21.5  | 22   | 19   | 21     |
|                  |                                                    | I I I I I I I I I I I I I I I I I I I | -      |       | _    | -    |        |

| CII-T-U1-R     | GDQGVOGEAGAOGLVGPRGERGFO                           | triple-helical | 24.5 | 93.5 | 16 | 16 | 19 |
|----------------|----------------------------------------------------|----------------|------|------|----|----|----|
| CII-T-U1-R-cit | GDQGV <b>O</b> GEAGA <b>O</b> GLVGPRGEXGF <b>O</b> | triple-helical | 61   | 1640 | 23 | 23 | 74 |

## Supplementary Table 3: Peptides bound to ACC1Fab in the crystal structures

Listed are the complete sequences of the peptides used for the crystallographic studies, with O = 4-hydroxyproline and X= citrulline, their residue numbers and structure in solution. The recognized epitopes are indicated in italic, with the conserved RG-TG motif emphasized by bold lettering, and the first and last epitope residue numbered in superscript according to their position in the peptide. Peptide residues visible in the electron density map in at least one of the eight copies per asymmetric unit are underlined (CII583-591 is listed twice to indicate the differences in visibility in the two different space groups in which the corresponding structure was determined). In CII616-639, only one of the three peptide chains carry the KKYG extension.

| ID (residue nr)                                                 | Sequence                                                                                                             |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| C1-CIT365-L(1-18)                                               | GP <u>O <sup>4</sup>GA<b>R</b>GLTGXOG</u> DA <sup>15</sup> GPO-NH <sub>2</sub>                                       |
| C1-CIT365-T(1-33)                                               | (GPO) <sub>3</sub> <u>GPO <sup>13</sup>GA<b>R</b>GLTGXOG</u> DA <sup>24</sup> (GPO) <sub>3</sub>                     |
| CII583-591/P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub> (1-30) | (GPO) <sub>2</sub> G <u>POGPO <sup>13</sup>GG<b>RG</b>L<b>TG</b>PI<sup>21</sup> GPOGP</u> OGPO                       |
| CII583-591/P1 (1-30)                                            | (GPO) <sub>3</sub> <u>GPO <sup>13</sup>GG<b>R</b>GLTGPI<sup>21</sup> GPO</u> (GPO) <sub>2</sub>                      |
| CII616-639 (1-46/50)                                            | (GPO) <sub>5</sub> <sup>16</sup> GAXGA <u>OGE<b>R</b>GETGPOGPA</u> GFA <sup>36</sup> (GPO) <sub>3</sub> GKKYG-Biotin |