Supplemental Figure 1



**Supplemental Figure 1. Dose and schedule optimization for i.t. administration of 1V270. (A** and **B**) Dose optimization studies. C3H mice (n=6-9/group) were implanted with 10<sup>5</sup> SCC7 cells. Mice were i.t. treated with 8, 16, 35, or 100 µg/injection of 1V270 starting when tumors reached 2-4 mm diameter, approximately day 8, daily for 5 days. (**C** and **D**) Schedule optimization studies. (**C**) Experimental protocol to determine optimal schedule of i.t. treatment with 1V270. C3H mice (n=14-15/group) were implanted with 10<sup>5</sup> SCC7 cells in both flanks. Intratumoral 1V270 treatment was given daily on days 8, 9, 10, 11, 12, or biweekly (on day 8, 11, 14, 17, and 20). Vehicle (10% DMSO) or isotype antibody administered as a control. (**D**) Tumor volume from mice treated daily (blue solid line) or biweekly (green solid line) with 1V270 or vehicle (black dashed line). Data presented are mean  $\pm$  SEM \**P*<0.05, \*\**P*<0.01, and \*\*\**P*<0.001 (two-way repeated measures ANOVA with Bonferroni *post hoc* test). Data shown are representative of two independent experiments showing similar results.



Supplemental Figure 2. The combination therapy inhibits MOC1 tumor progression at both injected and uninjected sites.  $2 \times 10^6$  MOC1 cells were s.c. implanted in both flanks of C57BL/6 mice (n=5/group). Mice were treated with 1V270 (100 µg/injection) and anti-PD-1 antibody (250 µg/injection).(**A**) Treatment schedule. (**B**) Tumor volume at injected sites. (**C**) Tumor volume at uninjected sites. Data presented are ± SEM \**P*<0.05 and \*\**P*<0.01 (two-way ANOVA with Bonferroni *post hoc* test)





(E) Representative flow cytometric plots of CD206<sup>+</sup>Class II<sup>-</sup> and CD206<sup>-</sup>Class II<sup>+</sup> populations. M1- and M2- like macrophages were identified as CD45<sup>+</sup>CD11b<sup>+</sup>F4/80<sup>+</sup>CD206<sup>-</sup>Class II<sup>+</sup> and CD45<sup>+</sup>CD11b<sup>+</sup>F4/80<sup>+</sup>CD206<sup>+</sup>Class II<sup>-</sup> populations, respectively.



**Supplemental Figure 4. Antigen associated macrophages were increased in the dLNs and tumors on days 13 and 21.** SCC7-tumor bearing mice were treated with 1V270 and anti-PD-1 antibody as described in Figure 1A and antigen uptake was evaluated on days 13 and 21 (n=4/group). OVA conjugated with Alexa Fluor 488 was i.t. injected one day before the analysis. Single cell suspensions were obtained from tumors at injected sites and draining lymph nodes (dLNs), and stained for CD45, CD11b and F4/80. OVA<sup>+</sup> cells in the gated macrophage population (CD45<sup>+</sup>CD11b<sup>+</sup>F4/80<sup>+</sup>) in the dLNs and tumors were analyzed by FACS. (**A**) %OVA<sup>+</sup> cells in CD45<sup>+</sup>CD11b<sup>+</sup>F4/80<sup>+</sup> macrophages. (**B**) %OVA<sup>+</sup> cells in CD45<sup>+</sup>CD11b<sup>+</sup>F4/80<sup>+</sup> TAMs. Data presented are means ± SEM. \**P*<0.01 (two-tailed Welch' s *t* test).

Supplemental Figure 5



**Supplemental Figure 5. TLR7, TLR9 and PD-L1 expression in SCC7 and MEER cells.** SCC7 and MEER cells were cultured *in vitro*, harvested, and RNA was isolated. Quantitative RT-PCR was used to compare the expression of TLR7, TLR9, and PD-L1. Gene expression was normalized with GAPDH and then compared to the expression levels in murine macrophage cell line RAW264.7 that was used as a positive control (100%). Data are presented as mean ± SEM for triplicate determinations. Data shown are representative of two independent experiments showing similar results.



Supplemental Figure 6. Expression of genes related to antigen presenting function and M1 macrophages is upregulated following 1V270 exposure ex vivo. (A) Experimental protocol. CD11b+ TAMs were isolated from day 14 SCC7-tumors using CD11b MicroBeads (Miltenyi Biotec) and treated with 1  $\mu$ M 1V270 or vehicle overnight. Quantitative RT-PCR was performed. Primers and probes, which were purchased from Thermo Fisher Scienticfic, are listed in Supplemental Table 4. (B) Antigen-presentation machinery. (C) M1-like macrophage related genes. (D) M2-like macrophage related genes. Data are presented as mean ± SD of triplicates. \**P*<0.05, \*\**P*<0.01, and \*\*\**P*<0.001 (one-tailed unpaired *t* test).



## Supplemental Figure 7. NK cells are partially involved in tumor suppression effects by the combination therapy.

(**A**) Experimental protocol of NK cell depletion. SCC7-bearing mice were treated with the combination therapy of 1V270 and anti-PD-1 agent. Anti-asialo GM1 rabbit polyclonal antibody (50  $\mu$ L/injection) or rabbit IgG polyclonal antibody was injected on days -1, 1, 5, 9, 13, and 17. (**B**) Tumor growth at the injected site was monitored. \*\*\**P*<0.001; n.s., non-significant by two-way repeated measures ANOVA with Bonferroni *post hoc* test (n=4-5/group).



Supplemental Figure 8. Representative flow cytometric plots of tumor infiltrating CD8<sup>+</sup> T cells. Tumors (injected and uninjected sites) were harvested on day 21 from SCC7-bearing mice treated with 1V270 and/or anti-PD-1 as described in Figure 1A. The single cell suspensions of tumor cells and splenocytes were prepared and stained for CD45, CD8, and intracellular IFN<sub>Y</sub> to identify tumor infiltrating IFN<sub>Y</sub><sup>+</sup>CD8<sup>+</sup> T cells. Fixation/Permeabilization Solution kit (BD Biosciences) were used for intracellular IFN<sub>Y</sub> staining. Representative plots of cells after staining with isotype antibodies are shown on the lower panel.



Supplemental Figure 9. The combination treatment increased HPV-tetramer positive CD8<sup>+</sup> T cells in the dLNs and the tumors. 2.5×10<sup>6</sup> HPV-positive MEER cells were implanted s.c. in both flanks of C57BL/6 mice (n=5/group). The combination treatment with anti-PD-1 and 1V270 was given as described in Figure 2A. One day after the final 1V270 injection, tumors and draining lymph nodes (dLNs) at injected sites were harvested. The single cell suspensions of LN cells and tumor cells were incubated with antibody cocktail (CD45, CD3, CD8 and HPV tetramer). iTAg Tetramer/PE - H-2 Db HPV 16 E7 (RAHYNIVTF) (MBL international Corporation, MA) was used to detect HPV specific CD8<sup>+</sup> T cells. (A) Representative flow cytometric plots. (B) Number of CD8<sup>+</sup>HPV<sup>+</sup> T cells in the dLN. (C) Number of CD8<sup>+</sup>HPV<sup>+</sup> T cells in the tumor at injected sites. Data are presented as mean ± SEM \**P*<0.05, one-tailed Welch' s *t* test.



**Supplemental Figure 10. Systemic administration of 1V270.** (**A** and **B**) 2×10<sup>5</sup> B16 melanoma cells were implanted in the right flank of C57BL/6 mice. Mice were intraperitoneally (i.p.) treated with 1V270 (20 nmol/injection or 80 nmol/injection) twice a week or three times a week. (**A**) 20 nmol/injection of 1V270 twice a week. (**B**) 80 nmol/injection of 1V270 twice a week or three times a week. \**P*<0.05, and \*\**P*<0.01 by two-way ANOVA, Bonferroni *post ho*c test.

Supplemental Figure 11



Supplemental Figure 11. Graphical representation of mean tumor volumes over time.  $8 \times 10^4$  CT26 tumor cells were injected s.c. in the flank of Balb/c mice on day 0 (n=5-7 mice/group). Anti-PD-1 and SD-101 were both started five days after tumor implantation. Anti-PD-1 and SD-101 were administered every 4 days from day 5 to 22. SD-101 (50 µg/injection) or CTRL-ODN (non-CpG ODN control) was given i.t. and anti-PD-1 (clone RMP1-14, 250 µg/injection) was i.p. administered. CT26 bearing mice received concomitant treatment with anti-PD-1 and SD-101 which led to incomplete tumor rejections (50% rejection). As we previously reported (Wang et al. PNAS 2016, Fig 2A, (30)), anti-PD-1 was given at day 7 and SD-101 at day 19 after tumor implantation which resulted in 100% rejection. Data shown are representative of three independent experiments showing similar results.



Supplemental Figure 12. MyD88/TLR signal pathways play roles in anti-tumor immunity. 10<sup>6</sup> HPV<sup>+</sup> MEER cells were implanted s.c. in C57BL/6 WT, *Myd88-/-, Tlr7-/- and Tlr9-/-* mice (n=14-20/group) and tumor growth was monitored. (A) WT, (B) *Myd88-/-*, (C) *Tlr7-/-* and (D) *Tlr9-/-* mice. (E) Kaplan-Meier survival curve.

|            | M1 or M2 | Control     | 1V270       | log2 Fold |          | Adjusted p  |
|------------|----------|-------------|-------------|-----------|----------|-------------|
| Gene       | related  | mean (log2) | mean (log2) | Change    | Raw p    | $(BH)^{b)}$ |
| Ccl3       | _        | 5.003286    | 7.4094      | 2.406114  | 2.06E-05 | 0.001       |
| Ccr7       | _        | 4.843       | 6.815       | 1.972     | 0.013464 | 0.022       |
| Cd74       | _        | 10.87143    | 12.59       | 1.718571  | 0.027306 | 0.038       |
| Tnf        | _        | 4.427429    | 6.039       | 1.611571  | 0.000379 | 0.003       |
| Cel5       | - M1     | 7.489714    | 8.8728      | 1.383086  | 0.002152 | 0.008       |
| Il1b       |          | 5.612714    | 6.9472      | 1.334486  | 0.025593 | 0.038       |
| Nos2       |          | 4.966857    | 6.2146      | 1.247743  | 0.0004   | 0.003       |
| Il12a      | _        | 3.618286    | 4.8412      | 1.222914  | 0.012922 | 0.022       |
| Cxcl10     | -        | 8.709571    | 9.7412      | 1.031629  | 0.005318 | 0.015       |
| Cd86       |          | 7.018857    | 7.9256      | 0.906743  | 0.001161 | 0.005       |
| Ido1       | _        | 3.186571    | 3.949       | 0.762429  | 0.015522 | 0.024       |
| Ptgs2      | _        | 6.301714    | 7.058       | 0.756286  | 0.108658 | 0.129       |
| Il6        | -        | 3.548429    | 4.2552      | 0.706771  | 0.12615  | 0.143       |
| Il12b      | _        | 4.452714    | 5.1346      | 0.681886  | 0.063445 | 0.083       |
| Ccl2       | -        | 11.84286    | 12.064      | 0.221143  | 0.51037  | 0.532       |
| Cxcl13     |          | 3.666429    | 8.0402      | 4.373771  | 0.000121 | 0.002       |
| Pparg      | -        | 4.385143    | 6.0906      | 1.705457  | 0.006581 | 0.015       |
| Irf4       | -        | 3.958714    | 5.5346      | 1.575886  | 0.012448 | 0.022       |
| Il10       | - M2<br> | 3.186571    | 4.74        | 1.553429  | 0.001085 | 0.005       |
| Chil3      |          | 3.084429    | 4.299       | 1.214571  | 0.005872 | 0.015       |
| Arg1       |          | 9.721571    | 10.8838     | 1.162229  | 0.009092 | 0.019       |
| Ccl24      |          | 2.924714    | 3.3746      | 0.449886  | 0.388212 | 0.422       |
| Ccl12      | _        | 9.360143    | 9.2912      | -0.06894  | 0.847038 | 0.847       |
| Cd163      | _        | 6.400571    | 5.4896      | -0.91097  | 0.073918 | 0.092       |
| Mrc1/Cd206 | -        | 10.47571    | 9.5268      | -0.94891  | 0.003822 | 0.012       |

Supplemental Table 1. M1 and M2 related gene expression in tumor tissues treated with i.t. 1V270 or vehicle (extracted from nCounter® PanCancer Immune Profiling Panel)<sup>a)</sup>

a) The genes were analyzed from nCounter® PanCancer Immune Profiling Panel (NanoString).

b) Adjusted p-values by Benjamini-Hochberg procedure.

| Antibody             | Clone    | Color      | Cat#    | Source         |
|----------------------|----------|------------|---------|----------------|
| CD3e                 | 145-2c11 | APC        | 17-0031 | eBioscience    |
| CD4                  | RM4-5    | eFluor 450 | 48-0042 | eBioscience    |
| CD8a                 | 53-6.7   | FITC       | 553030  | BD Biosciences |
| CD8a                 | 53-6.7   | eFluor 450 | 48-0081 | eBioscience    |
| CD11b                | M1/70    | eFluor 450 | 48-0112 | eBioscience    |
| CD45                 | 30-F11   | PE/Cy7     | 103114  | BioLegend      |
| F4/80                | BM8      | APC        | 17-4801 | eBioscience    |
| CD206                | C068C2   | PE         | 141706  | BioLegend      |
| IFNγ                 | XMG1.2   | APC        | 17-7311 | eBioscience    |
| CD40                 | 1C10     | PE         | 12-0401 | eBioscience    |
| CD80                 | 16-10A1  | FITC       | 104706  | BioLegend      |
| PD-L1 (CD274, B7-H1) | 10F.9G2  | PE         | 124308  | BioLegend      |
| MHC Class II (I-Ek)  | 14-4-4S  | FITC       | 11-5980 | eBioscience    |
| CD16/CD32 (FcR)      | 2.4G2    | Purified   | 553142  | BD Biosciences |

Supplemental Table 2. Antibodies used in flow cytometry analysis

| Primary antibody               | Dilution | Cat#        | Source                 |  |
|--------------------------------|----------|-------------|------------------------|--|
| Rat anti-mouse F4/80           | 25       | 14-4801     | eBiosciences           |  |
| Rabbit anti-mouse CD206        | 200      | ab64693     | abcam                  |  |
| Rat anti-mouse CD8             | 50       | 550281      | BD bioscience          |  |
| Secondary antibody             |          |             |                        |  |
| DyLight 549 Goat anti-Rat IgG  | 500      | 112-506-003 | Jackson immunoresearch |  |
| Alexa 488 Goat anti-Rabbit IgG | 1000     | 111-546-047 | Jackson immunoresearch |  |

Supplemental Table 3. Antibodies used for immunofluorescent staining

| Primer and probe number <sup>a)</sup> |
|---------------------------------------|
| Mm00440502_m1                         |
| Mm01302427_m1                         |
| Mm00441259_m1                         |
| Mm00443258_m1                         |
| Mm00434228_m1                         |
| Mm00434165_m1                         |
| Mm01288989_m1                         |
| Mm01329362_m1                         |
| Mm00657889_mH                         |
| Mm00474091_m1                         |
| Mm00445109_m1                         |
| Mm00475988_m1                         |
| Mm00441891_m1                         |
| Mm00711660_m1                         |
| Mm00444543_m1                         |
| Mm00446590_m1                         |
| Mm00446193_m1                         |
| Mm00452054_m1                         |
| Mm02342828_g1                         |
| Mm99999915_g1                         |
|                                       |

Supplemental Table 4. Primers and probes used in quantitative RT-PCR analysis

a) The primers and probes were purchased from Thermo Fisher Scientific.