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Supplemental Figure 1. Heme biosynthesis and mitochondrial genes are upregulated by MYCN
(related to Figures 1 and 2). A) Geneset enrichment analysis comparing genes upregulated in high MYCN
expression (first quartile) vs. rest from the SJ] AML patient cohort shows enrichment of heme metabolism
genes in patients with high MYCN expression. B) Urod and Abcg? mRNA levels were determined by
qPCR. 2-Way ANOVA was used (**, p<0.01)
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Supplemental Figure 2. SUCLA2 promoter is bound by MYC (related to Figure 2). A) Promoter and
MYCN binding site analysis using ENCODE data from UCSC Genome Browser. The promoter is bound
by MYC (shown in the red box) as demonstrated by ChIP-seq data.
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Supplemental Figure 3. Mitochondrial genes are upregulated by MYCN (related to Figure 2). A)
Heatmap from Fig. 2g is enlarged to include gene names. B) Vector- or MYCN transudced HPCs were
incubated with vehicle, ALA, and FTC as indicated and intracellular PPIX measured by FACS.
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Supplemental Figure 4. Specific Abcg2 variant is upregulated by MYCN (related to Figure 3). A)
Promoter and MYCN binding site analysis using ENCODE data from UCSC Genome Browser. B)
Schematic diagram of Abcg?2 promoter with putative MY CN-binding sites shown with red triangles.
Primers used for qPCR is shown with blue arrows. Not drawn to scale. C) Levels of different splice
variants were measured by qPCR. E2-E4 represents total A4bcg?2 transcript.
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Supplemental Figure 5. Progenitor self-renewal requires ABCG2 (related to Figure 3). A) MYCN-
transduced HPCs were plated using methocult medium in the absence or presence of FTC. B) HPCs
isolated from WT or Abcg2KO mice were transduced with vector or MYCN and serially replated on
methocult to assess self-renewal. C) HPCs isolated from WT or 4bcg2KO mice were transduced with
vector or MYCN and cell cycle was measured by FACS. D) HPCs isolated from WT or Abcg2KO mice
were transduced with vector or MYCN in combination with ABCG2 and serially replated on methocult to
assess self-renewal. HPCs isolated from E) WT or Abcg2KO mice were transduced with MYCN, fixed and



processed for EM. F) Progenitors from methocult (MC1) culture were analyzed for apoptosis by FACS. G)
Schematic drawing of the experiment to assess whether the defect in Abcg2KO MYCN HPCs are intrinsic
or extrinsic. H) HPCs harvested from CD45.1 WT and CD45.2 WT or Abcg2KO were transduced with
MYCN and serially replated on methocult. Colonies from methocult cultures were harvested and analyzed
by FACS for CD45.1 and CD45.2 antigen. Frequency of CD45. 1 and CD45.2 cells was normalized to the
value from day 0. I) WT or Abcg2KO HPCs were transduced with MYCN and transplanted into lethally
irradiated congenic recipient mice. Bone marrow cells were harvested at indicated time points and analyzed
for hematopoietic progenitors using FACS. YFP" (MYCN") LSK, CMP and GMP populations are shown.
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Supplemental Figure 6. PPIX toxicity is partially mediated by ROS and p38 (related to Figure 4). A)
Abcg2KO MYCN-MCI cells exhibit upregulation in ROS genes. B) MYCN-HPCs were incubated with
ALA, p38 inhibitor, SB203580, or anisomycin as indicated. The cells were fixed, permeabilized, stained
for phospho-p38 and analyzed by FACS. C) WT or Abcg2KO MY CN-HPCs were fixed, permeabilized,
stained for total and phospho-p38 and analyzed by FACS. D) p38 inhibition by SB203580 partially rescued
ALA toxicity in CFU-C assays. E) WT or 4bcg2KO HPCs were transduced with MYCN, incubated with
vehicle or ALA overnight and analyzed for viability by FACS. F) WT or Abcg2KO HPCs were transduced
with MYCN and transplanted into lethally irradiated congenic recipient mice. Mice succumbing to
leukemia were fixed in formalin, paraffin-embedded and histology slides prepared. Slides were stained with
H&E, or antibodies to GFP (which also recognizes YFP) and myeloperoxidase (MPO).



Supplemental Table 1. Analysis of Patient characteristics with UROD expression

Response to Favorable(1)  Favorable Favorable Intermediate Poor Normal
therapy Karyotype
Lesion t(15;17) t(8;21) PML- MLL Ch7loss
RARa
UROD>median 6 3 7 2 4 23

UROD<median 4 6 5 5 6 17




Supplemental Table 2. Hematopoietic stem cell genes in WT or 4bcg2KO-vector, MYCN HPCs
(related to Figure 3). Last four columns highlighted in blue are log ratio.

LPE

MYCN WT vs vec LPE LPE LPE
KO KO WT WT KO (>2-fold KO MYCN KO WT

Probe set 430v2 Gene vec MYCN vec MYCN with Vs. KOvs. vecvs. vecvs.

PM symbol avg avg avg avg FDR<0.05) WT WT MYCN MYCN
1428816 _PM a_at Gata2 8.77 9.53 8.64 9.70 Increased 0.14 -0.17 0.76 1.06
1450333 PM a at Gata2 8.83 9.57 9.10 9.50 Not significant _ -0.27 0.07 0.74 0.41
1417679 _PM_at Gfil 4.69 5.87 5.43 5.44 Not significant ~ -0.74 0.43 1.19 0.02
1420399 PM at Gfilb 5.34 4.67 5.06 5.07 Not significant 0.29 -0.40 -0.68 0.01
1448733_PM_at Bmil 5.73 5.19 5.73 5.58 Not significant ~ -0.01 -0.40 -0.54 -0.15
1417493 PM at Bmil 7.67 7.06 7.41 7.35 Not significant 0.26 -0.30 -0.61 -0.06
1454086 PM a at Lmo2 9.17 8.49 9.06 8.36 Not significant 0.11 0.13 -0.68 -0.70
1440878 PM_at Runx1 7.78 7.26 7.51 7.35 Not significant 0.27 -0.10 -0.52 -0.16
1422864 PM_at Runx1 9.01 8.75 8.88 891 Not significant 0.14 -0.16 -0.27 0.03
1422865 _PM _at Runx1 6.06 6.15 5.99 6.54 Not significant 0.08 -0.39 0.09 0.55
1427650 _PM_a_at Runx1 7.09 8.18 7.11 7.92 Not significant ~ -0.02 0.27 1.09 0.81
1452530 _PM_a_at Runx1 4.61 5.34 4.63 5.30 Not significant ~ -0.03 0.05 0.74 0.67
1452531 PM at Runx1 4.02 4.00 4.44 4.27 Not significant  -0.42 -0.27 -0.02 -0.18
1439107_PM_a_at Ml 8.19 7.70 8.07 7.92 Not significant 0.12 -0.22 -0.49 -0.15
1439108 PM_at Ml 8.72 8.13 8.45 8.24 Not significant 0.27 -0.11 -0.59 -0.21
1457193 PM_at MlI3 5.64 4.44 5.65 4.67 Not significant ~ -0.01 -0.24 -1.21 -0.98
1427150 _PM_at MlI3 6.96 5.86 7.00 6.06 Not significant ~ -0.04 -0.20 -1.10 -0.94
1427236_PM _a_at Ml 8.66 8.18 8.45 8.17 Not significant 0.21 0.02 -0.48 -0.28
1427283 PM_at Ml 6.09 5.58 6.39 5.44 Not significant ~ -0.30 0.14 -0.51 -0.95
1427555 PM_at Ml2 3.40 3.29 3.68 3.26 Not significant ~ -0.28 0.03 -0.11 -0.42
1434704 _PM_at Mlls 8.42 8.13 8.23 8.13 Not significant 0.19 0.00 -0.29 -0.10
1452377 _PM_at Ml 5.65 4.89 4.86 4.87 Not significant 0.79 0.02 -0.76 0.01
1432601 _PM_at Ml 3.08 2.87 3.12 2.82 Not significant ~ -0.04 0.06 -0.21 -0.30
1434178 PM_at MlI3 8.03 7.21 7.95 7.28 Not significant 0.08 -0.07 -0.82 -0.68
1434179 PM at MI113 7.07 6.57 6.70 6.55 Not significant 0.37 0.02 -0.50 -0.16
1416880_PM _at Mcll 9.80 9.62 9.52 9.59 Not significant 0.29 0.03 -0.18 0.08
1416881 PM at Mecll 10.00 9.99 9.70 9.99 Not significant 0.30 -0.01 -0.01 0.29
1437527 PM_x_at Mecll 11.20 10.80 11.03 10.74 Not significant 0.17 0.06 -0.40 -0.29
1448503_PM _at Mcll 11.44 11.21 11.31 11.25 Not significant 0.13 -0.04 -0.23 -0.06
1456243 PM_x_at Mecll 10.62 10.29 10.46 10.15 Not significant 0.17 0.14 -0.33 -0.31
1456381 PM x at Mcll 10.08 9.51 10.08 9.61 Not significant 0.01 -0.10 -0.57 -0.47
1449389 PM_at Tall 8.30 8.20 8.39 8.16 Not significant ~ -0.09 0.04 -0.10 -0.23
1450517 PM at Tal2 3.76 2.74 3.37 2.62 Not significant 0.39 0.12 -1.02 -0.75
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