Essential role of Kir5.1 channels in renal salt handling and blood pressure control

Oleg Palygin,1,2 Vladislav Levchenko,1 Daria V. Ilatovskaya,1 Tengis S. Pavlov,1 Oleh M. Pochynyuk,3 Howard J. Jacob,1,4 Aron M. Geurts,1,4,5 Matthew R. Hodges,1,2 and Alexander Staruschenko1,5

1Department of Physiology and 2Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA. 3Department of Integrative Biology, University of Texas Health Science Center Medical School, Houston, Texas, USA. 4Human and Molecular Genetics Center and 5Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.

Introduction

It is well recognized that higher levels of sodium intake are associated with elevated blood pressure (1–3). Importantly, the effect of dietary sodium on blood pressure is dependent on other components of the diet and, specifically, its potassium content (2, 4). The large-scale Prospective Urban Rural Epidemiology (PURE) study examined the association of urine sodium and potassium excretion (as surrogates of sodium and potassium intake) with blood pressure in more than 100,000 participants. It was reported that higher estimated potassium excretion was associated with a lower risk of the composite of death and major cardiovascular events (3). In another study, the PURE investigators noted an inverse association between estimated potassium excretion and systolic blood pressure, with each gram increment in estimated potassium per day resulting in a 1.08 mmHg decrease in systolic blood pressure. The highest blood pressures were observed in individuals with the maximum estimated sodium excretion combined with the lowest estimated potassium excretion (2). Similarly, a cluster-randomized, controlled trial, in which participants increased potassium consumption and reduced sodium consumption through the use of potassium-enriched salt, showed a reduction in cardiovascular mortality among those assigned to the higher-potassium group (5). Despite the highly relevant clinical and translational magnitude of these studies, specific mechanisms underlying these beneficial effects of high potassium remain unclear.

The plasma potassium level is maintained within rather narrow limits (between 3.6 and 5 mmol/l) and is tightly controlled by multiple mechanisms (6, 7). The kidneys are central in controlling systemic potassium homeostasis, as they eliminate more than 90% of a highly variable dietary potassium intake. A number of hormones are involved in maintaining plasma potassium levels within the normal range. Moreover, it was reported that dietary potassium deficiency raises blood pressure and enhances salt sensitivity (8).
ity and generate the driving force for Cl⁻ and Na⁺ transport (9, 10). Recent studies suggest that K₄.1 (likely forming heteromeric channels with K₅.1) is essential for modulating Na⁺-Cl⁻ cotransporter (NCC) activity, mediating potassium sensing by distal convoluted tubule (DCT) cells and coupling this signal to apical transport processes (11). Kcnj10 and Kcnj16 are highly expressed in the DCT, connecting tubule, and cortical collecting duct (CCD) — nephron segments that are established as major targets for multiple hormones controlling blood pressure. K₄.1 forms either a homotetrameric channel or coassembles with K₅.1 to yield the K₄.1/K₅.1 heterotetrameric channel (12–14). The heteromeric K₄.1/K₅.1 channel has unique properties, including single-channel conductance that is greater than that of the homomeric K₄.1 (13–15). We and others reported that the K₄.1/K₅.1 heteromer is the predominant basolateral K⁺ channel in both the DCT and CCD (16–19). In humans, loss-of-function mutations in the KCNJ10 gene have been shown to cause epilepsy, ataxia, sensorineural deafness and tubulopathy (EAST/SeSAME) syndrome (20–22). The renal phenotype of these mutations includes salt wasting, hypomagnesemia, metabolic alkalosis, and hypokalemia. Experiments with the Kir5.1 knockout (Kir5.1−/−) mice revealed that the lack of Kir4.1 resulted in an early postnatal mortality, decreased expression of the NCC (23), and increased levels of β and γ subunits of the epithelial sodium channel (ENaC) (24). Targeted disruption of the Kir10 gene in mice caused hypokalemic, hyperchloremic metabolic acidosis with hypercalciciuria (25). Mutations in Kcnj16 gene are also associated with nonfamilial Brugada syndrome that causes arrhythmias including sudden cardiac death (26); in addition, genome-wide association studies of metabolite quantitative traits identified Kcnj16 as a candidate gene (27). Furthermore, it was proposed that loss of activation of Kcnj16 by transcriptional factor HNF1β might result in the development of autosomal dominant tubulointerstitial kidney disease (28). Despite these important findings, the mechanistic role of K₄.1/K₅.1 (Kcnj10/Kcnj16) basolateral K⁺ channels in the development of salt-sensitive (SS) hypertension and control of electrolyte balance is largely unknown.

Dahl SS rats develop severe hypertension when placed on a high-salt diet and, therefore, represent a well-established research model of SS hypertension (1, 29–31). Remarkably, no studies have aimed to determine the role of K₄.1/K₅.1 channels in a model of hypertension, nor have any studies evaluated the role of these channels in electrolyte homeostasis when animals were maintained on various diets. Therefore, we created a rat model in which a zinc finger nuclease (ZFN)–induced mutation in Kcnj16 (likely forming heteromeric channels with Kir5.1) is essential for modulating Na⁺-Cl⁻ cotransporter (NCC) activity, mediating potassium sensing by distal convoluted tubule (DCT) cells and coupling this signal to apical transport processes (11). Kcnj10 and Kcnj16 are highly expressed in the DCT, connecting tubule, and cortical collecting duct (CCD) — nephron segments that are established as major targets for multiple hormones controlling blood pressure. K₄.1 forms either a homotetrameric channel or coassembles with K₅.1 to yield the K₄.1/K₅.1 heterotetrameric channel (12–14). The heteromeric K₄.1/K₅.1 channel has unique properties, including single-channel conductance that is greater than that of the homomeric K₄.1 (13–15). We and others reported that the K₄.1/K₅.1 heteromer is the predominant basolateral K⁺ channel in both the DCT and CCD (16–19). In humans, loss-of-function mutations in the KCNJ10 gene have been shown to cause epilepsy, ataxia, sensorineural deafness and tubulopathy (EAST/SeSAME) syndrome (20–22). The renal phenotype of these mutations includes salt wasting, hypomagnesemia, metabolic alkalosis, and hypokalemia. Experiments with the Kir5.1 knockout (Kir5.1−/−) mice revealed that the lack of Kir4.1 resulted in an early postnatal mortality, decreased expression of the NCC (23), and increased levels of β and γ subunits of the epithelial sodium channel (ENaC) (24). Targeted disruption of the Kir10 gene in mice caused hypokalemic, hyperchloremic metabolic acidosis with hypercalciciuria (25). Mutations in Kcnj16 gene are also associated with nonfamilial Brugada syndrome that causes arrhythmias including sudden cardiac death (26); in addition, genome-wide association studies of metabolite quantitative traits identified Kcnj16 as a candidate gene (27). Furthermore, it was proposed that loss of activation of Kcnj16 by transcriptional factor HNF1β might result in the development of autosomal dominant tubulointerstitial kidney disease (28). Despite these important findings, the mechanistic role of K₄.1/K₅.1 (Kcnj10/Kcnj16) basolateral K⁺ channels in the development of salt-sensitive (SS) hypertension and control of electrolyte balance is largely unknown.

Dahl SS rats develop severe hypertension when placed on a high-salt diet and, therefore, represent a well-established research model of SS hypertension (1, 29–31). Remarkably, no studies have aimed to determine the role of K₄.1/K₅.1 channels in a model of hypertension, nor have any studies evaluated the role of these channels in electrolyte homeostasis when animals were maintained on various diets. Therefore, we created a rat model in which a zinc finger nuclease (ZFN)–induced mutation in Kcnj16 led to K₅.1 channel knockout in SS rats (SSKcnj16−/−), which enables us to assess the role of the K₅.1 channel and the K₄.1/K₅.1 heteromer in the development of SS hypertension and control of kidney function. Here, we show that K₄.1/K₅.1–mediated K⁺ transport in the distal nephron contributes meaningfully to SS hypertension. Collectively, these studies provide evidence that K₄.1/K₅.1 channels are necessary for proper renal electrolyte homeostasis and suggest that their activity is tightly regulated during the development of SS hypertension. Furthermore, we demonstrated that Kcnj16 is essential for the beneficial effects of a high-potassium diet. Targeting these channels may be attractive for treatment of hyperkalemia, sodium retention, hypertension, as well as some other renal diseases.

Results

ZFN–based null mutation of Kcnj16 in the SS rat. The Dahl SS rat has been a highly useful animal model to study the mechanisms of SS hypertension, as it recapitulates the many phenotypic features found in hypertensive African Americans (1, 31). Changing the dietary sodium content from 0.4% NaCl (low salt; could be also considered as normal) to 4% NaCl (high salt) results in a profound elevation of blood pressure within 2–3 weeks, which is accompanied by a decrease in renal function. Immunohistochemical (IHC) staining showed K₅.1 expression in both the DCT and CCD, where CCDs were identified by the presence of intercalated and principal cells (K₅.1 is expressed in the principal cells only; see ref. 17). We found that in both segments K₅.1 channel expression was significantly elevated in SS rats fed a high-salt diet (4%; 3 weeks) compared with those fed a low (0.4%) salt diet (Figure 1A and Supplemental Figure 1; supplemental material available online with this article; https://doi.org/10.1172/jci.insight.92331DS1). To examine the role of K₅.1 in the development of SS hypertension, we created a Kcnj16 knockout on a Dahl SS rat background (SSKcnj16−/−) using the ZFN–based gene editing approach (32). A resulting 18-bp deletion (validated by DNA sequencing) led to a 6-amino-acid deletion within the second transmembrane domain (TM2) of the K₅.1 channel (Figure 1B). Despite the predicted in-frame nature of the mutation, a complete absence of K₅.1 expression in SSKcnj16−/− rats was demonstrated with IHC and Western blotting. As shown in Figure 1D, K₅.1 is highly expressed at the basolateral membranes of the CCDs and DCTs (localization
at specific nephron segments was confirmed with double staining with antibodies targeting aquaporin-2 (Aqp2) and the NCC, markers of collecting duct principal cells and DCTs, respectively; data not shown).

No Kir5.1 immunoreactivity was observed in the kidney sections from the SSKcnj16–/– rats, which is consistent with Western blotting analysis (Figure 1E).

Role of Kir5.1 in the control of blood pressure and kidney function. The Kcnj16 knockout in the SS rat resulted in changes in growth and development (reduction in body weight; Figure 1F). SSKcnj16–/– rats also had smaller kidneys (Figure 1C; normalized kidney per total body weight [TBW] was not different between strains — Figure 1F), and exhibited lower mean arterial pressure (MAP) compared with SS rats when they were fed a low-salt (0.4% NaCl) diet (Figure 1G).

Analyses of microalbuminuria, protein casts, glomerular damage, plasma aldosterone, blood urea nitrogen (BUN), and glomerular filtration rate (GFR) were performed in SSKcnj16–/– and control SS rats fed a 0.4% salt diet to assess potential changes in kidney function and renal injury. The renal histological changes represented by the percentage of protein casts and glomerular injury score (Figure 2, A and B)
were both significantly improved in SS\textsuperscript{Kcnj16−/−} rats. Consistent with this, the albumin excretion (normalized to creatinine) was significantly lower in SS\textsuperscript{Kcnj16−/−} rats. Plasma aldosterone concentration was found to be significantly lower in SS\textsuperscript{Kcnj16−/−} rats (Figure 2B). We also observed a decrease in GFR that likely reflects the physiological response to a decreased blood pressure (Supplemental Figure 2A) and an increase in plasma BUN (Supplemental Figure 2B) in SS\textsuperscript{Kcnj16−/−} rats.

Biochemical analyses of plasma samples revealed that SS\textsuperscript{Kcnj16−/−} rats develop severe hypokalemia and hypermagnesemia, but no changes in blood Na+ level (Figure 2C). Fractional excretion analyses demonstrated that SS\textsuperscript{Kcnj16−/−} rats have a salt-wasting phenotype with increased fractional excretion of Na+, K+, and Mg2+ (Figure 2D).

Kir4.1 and Kir5.1 are the main K+ channels in the basolateral membrane of DCTs and CCDs responsible for K+ recycling in these segments (9, 16, 17). Figure 3A illustrates that Kir5.1 is expressed on the basolateral membrane of both DCTs and CCDs (see also Supplemental Figure 3). We further employed a single-channel analysis of patch-clamp approach to investigate the functional properties of the basolateral K+ conductance in isolated CCDs of SS and SS\textsuperscript{Kcnj16−/−} rats. Electrophysiological recordings of basolateral K+ channels in the CCDs from SS\textsuperscript{Kcnj16−/−} rats (Figure 3B shows a representative tubule used for patch-clamp studies) revealed activity of only homomeric Kir4.1 channels. Control SS rats had both 48- and 25-pS channels, indicating heteromeric Kir4.1/Kir5.1 and homomeric Kir4.1 channels, respectively (Figure 3, C and D). Calculated channel open probability (P_{o}) was 0.55 ± 0.10 and 0.55 ± 0.07 at –60 and –80 mV holding potentials and 0.78 ± 0.05 and 0.84 ± 0.05 at the same voltage for heteromeric and homomeric channels, respectively. In contrast, SS\textsuperscript{Kcnj16−/−} rats revealed activity of only small homomeric Kir4.1 channels (P_{o} was 0.66 ± 0.04 and 0.61 ± 0.07 at –60 and –80 mV holding potentials) (Figure 3, E and F). No voltage P_{o} dependence was observed.
We also assessed if there were compensatory changes in Kir4.1 (Kcnj10) expression in the absence of Kcnj16 in the SSKcnj16–/– rats. As shown in Figure 4A and summarized in Figure 4B, Kcnj10 expression was significantly increased in SSKcnj16–/– rats. However, an IHC analysis revealed that Kcnj10 channels were predominantly expressed in the cytosol in SSKcnj16–/– rats in contrast to strong basolateral localization of this channel in SS rats (Figure 4, C and D). These data suggest that Kir5.1 is required for proper trafficking and localization of both Kir4.1 homomeric and Kir4.1/Kir5.1 heteromeric channels to the basolateral membrane of both DCT and CCD segments.

Effects of a Kcnj16 knockout on sodium reabsorption in the DCT and TAL. First, expression of NCC was analyzed to assess changes in transporters mediating sodium absorption in DCTs. Since it was reported that Kcnj10 is expressed in the cortical part of the thick ascending limb of Henle’s loop (TAL) (20, 33), we also explored the abundance of the Na+-K+-Cl- cotransporter (NKCC2), the main Na+ transporter in TAL. Both the total and phosphorylated (active) forms of NKCC2 and NCC were analyzed. We detected an upregulation of total NCC as well as active p-NCC levels in SSKcnj16–/– rats compared with SS rats (Figure 5, A and C). Similarly, total and phosphorylated NKCC2 were elevated in SSKcnj16–/– rats (Figure 5, B and D).

Physiological consequences of a Kcnj16 knockout upon salt-induced hypertension and renal injury. To test the effect of a high-salt diet and define the role of Kcnj16 in the development of SS hypertension, we performed the analysis of various physiological parameters of SSKcnj16–/– rats when they were switched from a low-salt (0.4%) to high-salt (4%) diets. Remarkably, none of the studied SS Kcnj16–/– rats survived more than 4 days after the diet change, and approximately half of the animals died within the first 24 hours of beginning the high-salt diet. The survival rates of SS and SS Kcnj16–/– rats (both male and female) fed a 4% salt diet are shown in Figure 6A. Urine and blood were collected and analyzed in SS and SSKcnj16–/– rats 1 day before and 1 day after switching to a high-salt diet in those rats able to survive more than 24 hours when fed the high-salt diet. Figure 6B summarizes Na+ and K+ concentrations in urine (normalized to creatinine) and plasma in SS Kcnj16–/– rats before and 24 hours after a high-salt diet. As presented in this figure, high salt intake rapidly increases the excretion of both Na+ and K+, and significantly lowers the blood electrolyte concentrations. Thus, blood K+ was reduced to less than 1.4 mmol/l. This severe hypokalemia is likely the
cause of death in SSKcnj16−/− rats, as it is known to result in respiratory paralysis and/or fatal arrhythmia and sudden cardiac arrest (34).

We further tested the effects of inhibitors of sodium channels and transporters critical for the maintenance of electrolyte homeostasis in the TALs, DCTs, and collecting ducts. The ENaC inhibitor benzamil (15 mg/l in drinking water) was able to rescue SSKcnj16−/− rats from mortality induced by a high-salt diet. Removal of benzamil from drinking water resulted in SSKcnj16−/− rat mortality. In contrast, supplementation of drinking water with hydrochlorothiazide (HCTZ; 75 mg/l) only slightly delayed the animals’ death. Interestingly, the effect of HCTZ was more profound in male compared with female subjects. Furosemide (15 mg/l) did not have any effects (Figure 6C); it was also tested at a higher concentration (150 mg/l) with the same outcome. Neither male nor female rats survived more than 3 days (N = 3 for each gender) when supplemented with furosemide.

High-potassium diet plays a protective role in Kcnj10/16-mediated abnormalities. Knockout of Kcnj10 in SS rats induces a severe renal phenotype that, apart from hypokalemia, is characterized with a lower blood pressure, decreased body/kidney weight, and 100% mortality within a few days when fed a high-salt diet. It was previously reported that dietary potassium deficiency, common in modern diets, raises blood pressure and enhances salt sensitivity (2, 8, 35). Thus, we next supplemented the high-NaCl diet with high K+ in an attempt to counteract the likely fatal hypokalemia observed in SSKcnj16−/− rats on high-Na+ diet and determine the relative contribution of K_4.1/K_5.1 channels in the protective effect of high-K+ diet in salt-induced hypertension. Three groups of animals were fed a high-NaCl diet (4%) for 5 weeks; 1 group of SS rats was not supplemented with high potassium (0.36% KCl) and 2 other groups (both SS and SSKcnj16−/−) were fed a diet supplemented with additional 2% KCl (total was 2.36% KCl). As shown in Figure 7A, after 5 weeks on a high-salt diet, MAP was reduced in SS rats supplemented with high potassium (compared with control SS rats). Importantly, our experiments revealed that all SSKcnj16−/− rats survived when fed a high-salt diet supplemented with high potassium (see Figure 6A for comparison). Furthermore, blood pressure did not change in SSKcnj16−/− fed a high-K+ diet, which together with the observation that Kcnj16 expression increases in SS rats fed a high-salt diet demonstrates a critical role of this channel in the development of salt-induced hypertension. Consistent with this conclusion, the development of albuminuria, the hallmark of SS hypertension and kidney damage in SS rats, was significantly lower in SSKcnj16−/− rats for all experimental data points (Figure 7B).
Figure 4A. The heart rate was lower in SS Kcnj16–/– rats compared with SS rats when fed a normal-salt diet, whereas a high-salt diet decreased heart rates in all groups (Supplemental Figure 4B). Shown in Figure 7C are summary graphs of the main electrolyte concentrations in urine normalized to creatinine, which demonstrate electrolyte balance in all studied groups (see also Supplemental Figure 5 for a summary of electrolyte homeostasis during the development of salt-induced hypertension). Importantly, as seen in Figure 7C, electrolyte/creatinine ratios were similar between SS and SS Kcnj16–/– rats when animals were fed a 0.4% NaCl diet, which allows us to assume that food intake was similar in the studied groups. Hematocrit levels also did not differ in SS and SS Kcnj16–/– rats fed a 0.4% NaCl diet (46.00% ± 1.45% and 44.81% ± 0.57% in SS and SS Kcnj16–/– rats, respectively; N = 5 and 6 rats, P = 0.631).

To further delineate the contribution of high-K+ diet and the Kir5.1 channel to the regulation of sodium absorption during the development of salt-induced hypertension in SS rats, we measured the expression of NKCC, p-NKCC, NCC, p-NCC, and all 3 ENaC subunits (including truncated forms of α- and γ-ENaC subunits) in homogenates from the kidney cortex lysates of SS rats fed either a high-salt diet (4% NaCl) or a 4% NaCl diet supplemented with high K+ and SS Kcnj16–/– rats fed a 4% NaCl diet supplemented with high K+. As shown in Figure 8, A and B, and summarized in Figure 8C, expression of both total NKCC2 and NCC was increased in SS Kcnj16–/– rats fed a 4% diet supplemented with high K+ compared with SS fed a high-salt diet either supplemented or not with high K+. NKCC2 expression was reduced when SS rats were fed a high-salt diet either supplemented or not with high K+. Levels of p-NKCC or p-NCC were not significantly different between groups. Expression of α- and β-ENaC subunits was increased when SS rats were fed a high-salt diet supplemented with high K+. Interestingly, expression of α-ENaC was increased in SS Kcnj16–/– rats fed a 4% diet supplemented with high K+ compared with SS fed a high-salt diet with high K+, but expression of β-ENaC and cleaved γ-ENaC was decreased compared with the same group. When considering these data, it should be taken into account that SS rats were fed a high-salt diet for 5 weeks and, as it was previously shown, expression of sodium transporters is inappropriately regulated in SS rats compared with salt-resistant animals. For instance, ENaC expression (and activity) is upregulated in SS rats when animals are fed a...
high-salt diet (36–38), whereas in salt-resistant animals, high salt results in inhibition of ENaC (39).

Dietary potassium loading results in rapid kaliuresis, diuresis, and natriuresis (7, 40, 41), and the next aim was to test the effect of high-K⁺ supplementation in SS Kcnj16–/– rats on body and kidney weights. As summarized in Figure 9, the kidney and body weights of SS Kcnj16–/– rats were significantly improved when the dietary potassium content was increased. Figure 10 summarizes our hypothesis regarding the role of Kir4.1/Kir5.1 channels in the kidney function and blood pressure control based on the SSKcnj16–/– model.

Discussion

In the kidney, discretionary Na⁺ reabsorption and K⁺ secretion in the aldosterone-sensitive distal nephron is a determinant of the pressure-natriuresis relationship, which is of fundamental importance in the long-term control of arterial pressure (42–44). Importantly, dietary potassium deficiency raises blood pressure and enhances salt sensitivity by changing cell membrane voltage (resulting in hyperpolarization) and stimulating NCC activation (8). Specific Kir channels, including Kir4.1 and Kir5.1, play a dominant role in determining resting membrane potential and spatial K⁺ buffering. One of the primary functions of basolateral Kir4.1/Kir5.1 channels is to recycle K⁺ across the basolateral membrane for proper function of the Na⁺-K⁺ pump. Mutations of these channels in humans can cause severe disease phenotypes (20–22, 26), but their role in the development of SS hypertension was never investigated. The strain of the re-derived Dahl SS rat used in our studies (SS/JrHsdMcw) has been inbred for more than 50 generations and is a practically proven model for the study of SS hypertension (31, 45, 46).

Kir5.1 typically does not form a functional homomeric K⁺-conducting channel in the absence of another
related subunit, and the resulting $K_r4.1/K_r5.1$ heteromeric channel is clearly distinguishable from the $K_r4.1$ homomeric channel (9, 15). It was previously thought that $K_r4.1$ was the dominant channel driving basolateral K^+ recycling in the distal tubule, whereas $K_r5.1$ was considered to have a modulatory role by increasing conductance and blunting pH sensitivity (10). Indeed, loss-of-function mutations in $Kcnj10$ cause SeSAME/EAST syndrome associated with hypotension and a severe salt wasting tubulopathy in humans and animal models (20–22). In contrast, $Kcnj16$ deletion in mice does not lead to urinary salt wasting and reduced blood pressure due to the compensation by $Kcnj10$ (25). However, as we report here, $Kcnj16$ knock-out in a rat model of SS hypertension dramatically alters these conclusions. These SS $Kcnj16^{−/−}$ rats exhibit a renal phenotype reminiscent of SeSAME/EAST and $Kcnj10$ deletion: salt wasting, hypomagnesemia, and hypokalemia. Interestingly, we detect prominent retention of Kir4.1 in the cytosol with only a small number of channels present on the basolateral membrane, suggesting interdependence of proper translocation of both channels in the setting of SS hypertension. This is the opposite of the marked upregulation of plasma membrane Kir4.1 in normotensive mice lacking $Kcnj16$ (25). It needs to be further determined whether this feature is common for hypertensive or conditionally hypertensive animal models.

We demonstrate here that the salt-wasting phenotype of SS $Kcnj16^{−/−}$ rats occurs despite compensatory increased total and phosphorylated levels of the major Na$^+$ transporters in the TAL and DCT: NKCC2 and NCC, respectively. We hypothesize that the augmented capacity for the apical sodium entry is diminished...
by the lack of K_4.1/K_5.1–mediated basolateral K^+ recycling essential for the Na^+/K^+-ATPase activity. This, in turn, leads to increased fluid delivery to the CD system, where ENaC-mediated sodium entry (in an attempt to conserve sodium) will lead to mandatory apical K^+ secretion in order to sustain activity of the basolateral pump, thereby producing profound kaliuresis and hypokalemia. This state is also exacerbated
when SSKcnj16–/– rats are challenged with a high-salt diet, which is reported to cause a paradoxic upregulation of ENaC activity in SS rats (36). This exacerbates K\textsuperscript+ wasting and drives plasma K\textsuperscript+ to levels incompatible with survival. Importantly, our data with diuretics targeting NKCC, NCC, and ENaC revealed that only potassium-sparing diuretic benzamil, which is an inhibitor of ENaC, rescued SSKcnj16–/– rats when they were challenged with a high-salt diet. Therefore, the role for ENaC in SSKcnj16–/– rats seems potentially interesting and requires further investigation.

Dietary potassium supplementation rescued SSKcnj16–/– rats from mortality induced by a high-salt diet and allowed us to estimate the contribution of K\textsubscript{ir5.1} channels in the pathology of salt-induced hypertension. The ability of K\textsuperscript+ supplementation to mitigate elevated blood pressure has long been recognized (47). Consistently, the Dietary Approaches to Stop Hypertension (DASH) diet, a diet that is low in sodium and replete with potassium, calcium, and magnesium, is sponsored by the National Heart, Lung, and Blood Institute and is now being recommended as a standard lifestyle modification for patients with hypertension or other cardiovascular risk factors (48, 49). The beneficial effects of dietary potassium are most likely related to the reduced activity of NKCC2 and NCC. It was recently reported that NCC activity in the DCT is induced by augmented plasma K\textsuperscript+ (41, 50). The rapid phosphorylation of NCC in response to a low-potassium diet involves activation of WNK/SPAK by decreased intracellular Cl\textsuperscript– concentrations due to hyperpolarization of the cell membrane in the DCT cells (8, 51). However, recent studies by Penton et al. demonstrated that dephosphorylation of NCC during high-K\textsuperscript+ diet is mediated through a Cl\textsuperscript–-independent pathway, which requires further investigation (52). We have observed in our studies that expression of both NCC and NKCC2 was increased in SSKcnj16–/– rats compared with SS rats fed a high-salt diet either supplemented with high K\textsuperscript+ or not. Expression of ENaC subunits was also modulated in animals supplemented with high K\textsuperscript+, which together with the observation that benzamil rescues SSKcnj16–/– rats when animals fed a high-salt diet, also supports the hypothesis that K\textsubscript{ir5.1} channels are important for its regulation. When considering these data, it should be taken into account that all these studies were performed in a model of SS hypertension. It should be noted that a high-potassium diet attenuated blood pressure in SS rats, even when the animals were challenged with a high-salt diet. In contrast, K\textsubscript{5.1} deletion completely precluded elevations of blood pressure caused by high salt in the SS background. This emphasizes the overarching role of basolateral K\textsuperscript+ recycling, and particularly K\textsubscript{ir5.1} channels, in orchestrating SS apical Na\textsuperscript+ reabsorption in the distal tubule and collecting ducts.

The broad significance of this study is that, with the identification of the indispensable importance of K\textsubscript{5.1} channels in the development and pathology of SS hypertension, we demonstrate how disruption of this channel alters the balance of both Na\textsuperscript+ and K\textsuperscript+, which cannot be compensated by any other factors, and invariably leads to rapid death when animals are kept on a high-salt diet. These data further suggest that K\textsubscript{5.1} channels are a key component of the protective mechanism of high K\textsuperscript+ in many diets, such as the DASH diet. We propose that targeting K\textsubscript{5.1} function clinically could have multiple beneficial actions, in either preventing or mitigating SS hypertension as well as managing various hyperkalemic states. In summary, these data provide evidence that modulation of K\textsuperscript+ secretion in the kidneys by diet manipulation or by targeting K\textsubscript{5.1} may be a powerful tool for the attenuation of high blood pressure during the development of SS hypertension.

Figure 9. High-potassium diet supplement restores the development of SSKcnj16–/– rats. (A) The effect of a high-potassium diet (2% KCl) on body weight in SSKcnj16–/– rats. (B) Changes in kidney mass of salt-sensitive (SS) and SSKcnj16–/– rats on low (0.36% K\textsuperscript+) and high (1.41% K\textsuperscript+) potassium-containing diets. Comparisons between groups were made using 1-way ANOVA. *P < 0.05.
Methods

Animals. Male and female rats were obtained at weaning from colonies developed and maintained at the Medical College of Wisconsin under controlled environmental conditions with parents and offspring fed a purified AIN-76A rodent food (Dyets, Inc.; D113755) containing 0.4% NaCl with water provided ad libitum.

Generation of SSKcnj16–/– mutant rats. Kcnj16 gene knockout on the genetic background of the Dahl SS rat was produced using ZFN mutagenesis as described previously (32, 53). Briefly, ZFNs targeting the Kcnj16 exon 1 sequence AGCTGCATCATAAACACCttcatcATTGGGGCAGCCTTGGCA, where each ZFN binds to each underlined sequence on complementary strands were obtained from Sigma-Aldrich. In vitro–transcribed mRNAs encoding ZFNs were injected into SS/JrHsdMcwi (SS) strain embryos and a putative founder animal was identified harboring an 18-bp deletion mutation (Rn5, chr10:99,084,780–99,084,797). This founder was back-crossed to the parental SS strain and a SS-Kcnj16em1Mcwi (SSKcnj16–/–) breeding colony was established.

Dietary protocol and animal handling. At 8–9 weeks of age, the salt content of the chow was either maintained at 0.4% in the group fed a normal diet or increased to 4.0% NaCl (Dyets, Inc.; D113756), and the rats were maintained on these diets for up to 5 weeks. For experiments with high K+ content, the final K+ concentration was 1.41% (2% KCl was added to a base diet containing 0.36% of total K+ concentration). For the survival experiments under high-salt conditions drinking water was provided ad libitum and supplemented with benzamil (15 mg/l), HCTZ (75 mg/l), or furosemide (in low 15 mg/l or high 150 mg/l concentrations). Urine samples were collected for 24 hours in metabolic cages to measure albuminuria, creatinine, and electrolytes. Blood samples were collected from the abdominal aorta for the measurement of plasma creatinine, BUN, and electrolyte concentrations before the final collection of tissues under anesthesia. Left kidneys were removed, formalin fixed, paraffin embedded, and then sections were stained with Masson’s trichrome for quantification of kidney injury. The right kidneys were removed and used for electrophysiological and Western blotting analyses.

Blood pressure, renal function, and urine/serum biochemistry. At 8–9 weeks of age, rats were placed in metabolic cages (40615; Laboratory Products) to acclimate for 24 hours, followed by a 24-hour urine collection. Urine volume, Na⁺, K⁺, Mg²⁺, creatinine, protein, and microalbumin were measured as described previously (54). Following urine collection, designated rats were anesthetized with 2%–3% (vol/vol) isoflurane and a blood pressure transmitter (PA-C40; DSI) was surgically implanted subcutaneously, with the catheter tip secured in the abdominal aorta via the femoral artery. After a 3-day recovery period, blood pressure and heart rate were measured with a DSI system in conscious, freely moving male SS and SSKcnj16–/– rats under different diet protocols, similar to those described previously (55, 56). Urine measurements were taken weekly during the high-salt challenge; in this case, Na⁺, K⁺, Cl⁻, and Ca²⁺ electrolytes were measured with radiometric assay (ABL800 FLEX,Radiometer America Inc.). At the completion of the study, rats were anesthetized with 2%–3% (vol/vol) isoflurane and surgically prepared for a kidney flush and arterial blood collection. Blood electrolyte levels were immediately analyzed using the ABL800 FLEX blood gas analyzer.

The percentage of the electrolytes filtered by the kidney that was excreted in the urine was measured in terms of plasma and urine concentrations using following equations: FE (Na, K)(%)) = ([Na, K] urine / [Na, K] plasma) * 100.
to creatinine ratio/([Na, K] plasma to creatinine ratio) × 100, or FE (Mg)(%) = ([Mg] urine to creatinine ratio/0.7 × (Mg) plasma to creatinine ratio) × 100.

For aldosterone level analysis collected blood samples were centrifuged (6,000 g, 10 minutes), and then plasma was analyzed with Aldosterone RIA kits (MP Biomedicals) as previously reported (57).

Measurement of GFR in conscious rats. The GFR was measured in unrestrained conscious rats using a high-throughput method featuring detection of fluorescent FITC-labeled inulin (TdB Consultancy AB) clearance from blood. The method was adapted for rats from a protocol previously described for mice by Rieg (58). Predialyzed 20 mg/ml of FITC-inulin solution in saline (2 μl of 2% solution per 1 g of body weight) was administered by a bolus tail vein injection to rats briefly anesthetized with isoflurane. Immediately after the injection anesthesia was discontinued, and the animals were allowed to recover consciousness. Then, 10 μl of blood was collected 3, 5, 8, 16, 25, 40, 60, 80, 100, and 120 minutes after the injection by tail bleed. Next, plasma was separated, and inulin clearance was quantified by FITC intensity. Fluorescence measurements were performed using a NanoDrop 3300 Fluorospectrometer (Thermo Fisher Scientific). GFR was then calculated from the observed decrease in FITC fluorescence using a 2-compartment model (the initial fast decay representing the redistribution of FITC-inulin from the intravascular compartment to the extracellular fluid, and the slower phase reflecting clearance from plasma). The GFR curve was approximated with a bi-exponential decay function using OriginPro 9.0 (OriginLab) software, and GFR values in ml/min normalized to body weight were obtained from the fitting parameters using a previously described equation (58).

Western blotting and mRNA analysis. Kidney cortical lysates were prepared as follows (36). The SS or SS<sup>Kcnj16^{−/−} rat kidneys were flushed with PBS in an anesthetized animal, excised and cut in 1- to 2-mm slices under a binocular microscope with ×6 magnification. The approximate apical kidney cortex sections were carved and then diced into small pieces with a razor blade. Samples were pulse sonicated in GLB with a protease inhibitor cocktail (Roche) for 10 seconds and spin cleared at 10,000 g for 10 minutes. The resulting supernatant was subjected to PAGE, transferred onto nitrocellulose membrane (Millipore) for probing with antibodies, and subsequently visualized by enhanced chemiluminescence (ECL; Amersham Biosciences). See complete unedited blots in the supplemental material.

For real-time PCR (RT-PCR) analysis tissue was collected from SS rats maintained on 0.4% or 4% NaCl diet. The kidney cortex was snap-frozen in liquid nitrogen and stored at −80°C. Total RNA was extracted using TRIzol reagent (Thermo Fisher Scientific). The quality of each sample was assessed using an Agilent 2100 BioAnalyzer and quantity determined by spectrophotometry (Nanodrop). Two micrograms of total RNA was reverse transcribed by random hexamer primers into cDNA (Thermo Fisher Scientific RevertAid First-Strand cDNA synthesis kit) and real-time PCR analysis was performed using 8 to 10 ng total RNA with SYBR Green chemistry on an ABI Prism 7900HT (Applied Biosystems) as previously described (59). Primer sequences are given in the supplemental data.

Histological and IHC analysis. Kidneys were harvested for histological and IHC analysis using methods described previously (36). Kidney sections were cut at 4 μm, dried, and deparaffinized for subsequent labeling by streptavidin-biotin immunohistochemistry. After deparaffinization, slides were treated with a citrate buffer (pH 6) for a total of 35 minutes. Slides were incubated with peroxidase block (Dako), avidin block (Vector Laboratories), biotin block (Vector Laboratories), and serum-free protein block (Dako).

Tissue sections were incubated for 90 minutes in 1:50 dilutions of rabbit polyclonal antibody against K_{5.1} and in 1:50 dilutions of goat polyclonal antibody against K_{4.1} (ab74130 and ab105102, respectively, Abcam). Secondary detection was performed with anti-goat or anti-rabbit biotinylated IgG (BioCARE followed by streptavidin-horseradish peroxidase (BioCARE) and visualized with diaminobenzidine (Dako). All slides were counterstained with Mayer’s hematoxylin (Dako), dehydrated, and mounted with permanent mounting medium (Sakura).

For double immunostaining images, kidney sections (4 μm) were labeled with rabbit anti-K_{5.1} (SAB4501636, Sigma-Aldrich) and AQP2 (sc-28629, Santa Cruz Biotechnology) antibodies. Binding was revealed with Alexa Fluor 488 or 633 conjugated with goat anti-rabbit biotinylated IgG (Molecular Probes). Immunostaining was performed in tissues from at least 4 different kidneys. All tissue sections were examined by TCS SP5 confocal laser-scanning microscopy (Leica Microsystems).

For the kidney damage analysis, the tissue was stained with Masson’s trichrome. Scoring of glomerular injury (average of 80 glomeruli quantified per kidney) was conducted blindly by at least 2 independent investigators according to previously published protocols (60). In brief, each visible glomerulus from a rep-
Bath and pipette solutions were (in mM) 150 NaCl, 5 KCl, 1 CaCl₂, 2 MgCl₂, 5 glucose, and 10 HEPES.

Channels in the isolated rat CCD. CCDs were isolated from SS and SS Kcnj16⁻/⁻ rats, as described previously.

NP₀ was calculated by normalizing NPᵣ for the total number of estimated channels (N) in the patch.

Statistics. Data were compared using 1-way ANOVA followed by a Bonferroni or Tukey comparison tests of means. Data are represented as box-and-whisker plots that indicate mean value, standard error (box), and standard deviation (whisker). Differences were considered statistically significant at P less than 0.05.

Study approval. All animal experiments were conducted in accordance with the NIH Guide for the Care and Use of Laboratory Animals following protocol review and approval by the Medical College of Wisconsin Institutional Animal Care and Use Committee.

Acknowledgments

We would like to thank Jessica L. Barnett, Oleh Prudnikov, Christine Nguyen, Jennifer M Connell, and Chun Yang for experimental help and analysis; Paula North and Christine Duris for histology and immunohistochemistry experiments and their interpretation; David L. Mattson, Lisa Henderson, and Camille Torres for help with biochemical assays; and Andrey Ilatovskiy for development of software used in GFR measurements. David H. Ellison (Oregon Health & Science University, Portland) and Pablo Ortiz (Henry Ford Hospital, Detroit) are greatly appreciated for providing antibodies. This research was supported by the NIH grants HL135749, HL10880, HL122662 (to A.S.), HL122358 (to M.H.), HL101681 (to H.J. and...
A.G.), OD008396 (A.G.); MCW NRC/AHW pilot grant 9520217 (to O. Palygin and M.H.); and American Heart Association grants 16EIA26720006 (to A.S.) and 17SDG33660149 (to O. Palygin).

Address correspondence to: Alexander Staruschenko, Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA. Phone: 414.955.8475; Email: staruschenko@mcw.edu.

HJJ’s present address is: HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, Alabama, USA.

TSP’s present address is: Hypertension and Vascular Research Division, Henry Ford Health System, Detroit, Michigan, USA.

