CXCL13-producing T_{FH} cells link immune suppression and adaptive memory in human breast cancer

Chunyan Gu-Trantien, Edoardo Migliori, Laurence Buisseret, Alexandre de Wind, Sylvain Brohée, Soizic Garaud, Grégory Noël, Vu Luan Dang Chi, Jean-Nicolas Lodewyckx, Céline Naveaux, Hugues Duvillier, Stanislas Goriely, Denis Larsimont and Karen Willard-Gallo

Supplemental Methods

&

Supplemental Figures

Supplemental Methods

Patient population and clinical samples

Tumor and blood samples were obtained from patients who underwent surgical resection for BC or benign breast tumors at the Institut Jules Bordet. Fresh tonsils (n = 10) and mammary reduction tissues (n = 5) were obtained from CHU Saint-Pierre. Prospectively collected fresh tumor tissues (n = 42; Table S3) and peripheral blood (PB; n = 9; Table S3) from BC patients were immediately analyzed by flow cytometry ex vivo. PB samples from 5 healthy female adults were used as controls or for CXCL13 induction experiments. Formalin-fixed paraffin embedded (FFPE) tumor tissues from 60 BC patients were used for survival analysis (retrospective set; whole genome gene expression microarray data available in Dedeurwaerder *et al.*, 2011)(Table S1). These samples were analyzed by quantitative PCR (qPCR) and IHC. In addition, FFPE tumor tissues from 10 BC patients were immunofluorescent (IF)-and IHC-stained.

Flow cytometry

Tissue fragments from fresh surgical specimens were processed as previously described (Garaud et al., 2014; Gu-Trantien et al., 2013). Briefly, dissected tissues were directly transferred into 3 ml of X-VIVO 20 (Lonza) before two 30s rounds of mechanical dissociation with the GentleMACS[™] Dissociator (Program A.01; Myltenyi Biotec). The resulting cell suspension was filtered following each dissociator run using a 40 µm cell strainer (BD Falcon), washed with X-VIVO 20, centrifuged 15 min at 600 g and resuspended in X-VIVO 20 before flow cytometric analysis or cell sorting. For flow cytometric analysis, samples were surface stained for 35 min at 4 °C followed by dead cell staining using Fixable Viability Dye (eBioscience) before intracellular staining with FoxP3 Staining Buffer Set (eBioscience). For control D-PB and P-PB, surface staining was performed in 100 µl of fresh whole blood followed by downstream steps as above without using red blood cell lysis reagents. CXCL13 staining was performed directly ex vivo without using Golgi-stop reagents and the entire staining procedure was completed within 6-hours of tumor resection. Brefeldin A (BD Biosciences; see In vitro stimulation below) was added for experiments where IFNy was detected. Ab used are listed in the table below. Data were acquired on a Navios Flow Cytometer and analyzed using Kaluza (Beckman Coulter) and FlowJo softwares. B cell subpopulations are determined using criteria in Bohnhorst et

al., 2001, Green et al., 2012, Perez-Andres et al., 2010 and Zirakzadeh et al. 2013.

Ab used for flow cytometric analysis							
Name	Color	Company	Reference	Clone			
BCL6	PE	BD Biosciences	561522	K112-91			
CCR7	AC7	Biolegend	353211	G043H7			
CCR7	BV510	Biolegend	353231	G043H7			
CD3	VioBlue	Miltenyi Biotec	130-094-363	BW264/56			
CD4	AF700	eBioscience	56-0049	RPA-T4			
CD8	BV510	BD Biosciences	563919	SK1			
CD19	APC	R&D Systems	FAB4867A	4G7-2E3			
CD25	PF710	eBioscience	46-0257	CD25-4E3			
CD27	PC7	Beckman Coulter	A54823	1A4CD27			
CD38	PF710	eBioscience	46-0388	HB7			
CD45RA	PTR	Life Technologies	MHCD45RA17	MEM-56			
CD56	PE	eBioscience	12-0567	CMSSB			
CD200	PE	Biolegend	329206	OX-104			
CTLA-4	PE	BD Biosciences	555853	BNI3			
CTLA-4	BV421	BD Biosciences	562743	BNI3			
CXCL13	APC	R&D Systems	IC801A	53610			
CXCR5	PE	R&D Systems	FAB190P	51505			
CXCR5	PF610	eBioscience	61-9185	MU5UBEE			
CXCR5	BV421	BD Biosciences	562747	RF8B2			
Fixable Viability Dye	eF780	eBioscience	65-0865				
FoxP3	PF610	eBioscience	61-4776	PCH101			
FoxP3	PC5.5	eBioscience	45-4776	PCH101			
ICOS	PC7	eBioscience	25-9948	ISA-3			
IFNγ	PE	eBioscience	12-7319	4S.B3			
IFNγ	PC7	BD Biosciences	557643	B27			
lgD	PE	Miltenyi Biotec	130-094-539	lgD26			
Ki67	FITC	eBioscience	11-5699	20Raj1			
Ki67	PF710	eBioscience	46-5699	20Raj1			
PD-1	FITC	eBioscience	11-9969	MIH4			
PD-1	PF710	eBioscience	46-9969	MIH4			
T-bet	BV421	BD Biosciences	563318	O4-46			
TIGIT	PF710	eBioscience	46-9500	MBSA43			

IHC and Immunofluorescence

FFPE sections (4 µm) from available tumor tissues were deparaffinized and demasked prior to Ab labeling. Ab are listed in the table below. FFPE tumor blocs from 60 patients of the retrospective set (Table S1) were labeled with α CD20 (*n* = 51), α CD23 or α CD45 Ab. Four select tumors from the prospective patient set (Table S3) were dual-labeled with α CD3/ α CD20 or with α CD4/ α CD8. IHC Ab staining on full-face sections was performed using the iVIEW DAB Detection Kit and a BenchMark XT IHC/ISH automated slide stainer (Discovery XT, Tucson, USA). Slides were read by 2 trained pathologists. IHC images were acquired at Lens 20x with a Nanozoomer 2.0-RS Digital slide scanner (Hamamatsu) and analyzed using NDP.view2 software. These methods were standardized as described in Buisseret *et al., in press.*

FFPE blocs from 10 BC tumors and 4 tonsils were analyzed using IF. Mounted sections were deparaffinized with xylene, pretreated with citrate 10 mM, pH 6.0 at 95 °C for 30 min, blocked with 1% BSA for 30 min prior to incubation with a mixture of 3 primary Ab including αCXCL13 in a moist chamber at 4 °C overnight. After washing, a mixture of 3 secondary Ab was added for 2-hours at room temperature followed by mounting in a Prolong Gold Antifade Reagent with DAPI (Life Technologies). Slides were analyzed using a Zeiss 710 confocal microscope (Carl Zeiss). Images were acquired at 20X Magnification and analyzed using ZEN software. Two different magnifications from the same original images are presented for each boxed region shown in the Figures.

Ab used for IHC staining										
Antigens	[Dilution	Company R		eference H		lost		Clone	
CD3	pr	ediluted	Dako		IR503 Ra		{abbit		polyclonal	
CD4	pr	ediluted	BioSB B		SB5150 Ra		Rabbit		RBT-CD4	
CD8	pr	ediluted	Dako		IR623 Mc		Mouse		C8/144B	
CD20	pr	ediluted	Dako		IR604	1604 Mous		L26		
CD23	pr	ediluted	Ventana 790-4		90-4408	Rabbit		SP23		
CD45	pr	ediluted	Dako	ko IR751		Mouse 2E		2E	2B11 + PD7/26	
Primary Ab used for IF staining										
Antigens	[Dilution	Company		Referen	се	Ho	st	Clone	
CD3	pr	ediluted	Dako		IS503		Rabbit		polyclonal	
CD4		1/50	Cell Marque		104R-1	4	Rab	bit	SP35	
CD8		1/50	Thermo		RM-9116-S1		Rabbit		SP16	
CD20		1/50	Abcam		ab947	9475		ISE	L26	
CD21		1/500	Abcam		ab75985		Rabbit		EP3093	
CXCL13		1/200	R&D Systems		AF801		Goat		polyclonal	
IFN-γ		1/100	R&D Systems		MAB2851		Mouse		25723	
IgA		1/100	Cell Marque		267A-14		Rabbit		polyclonal	
lgG		1/100	Cell Marque		269A-14		Rabbit		polyclonal	
Ki67		1/50	Abcam		ab16667		Rabbit		SP6	
T-bet		1/400	R&D System		MAB5385		Mouse		525803	
Secondary Ab used for IF staining										
Antigens	gens Dilution		Company		Reference		e Host		Reactivity	
DyLight 4	88	1/200	Abcam		ab98514		Donkey		Goat	
DyLight 5	DyLight 550 1/200		Abcam		ab98767		Donkey		Mouse	
DyLight 650 1/200		Abcam		ab98491		Donkey		Rabbit		

Cell sorting and isolation

For molecular analyses, CD4⁺ T cell subpopulations were sorted using a MoFlo Astrios Cell Sorter (Beckman Coulter) from 5 tonsils (mononuclear cells frozen in DMSO) and 1 fresh BC homogenate. The cell purification protocols were controlled by flow cytometry with >95% purity observed. Total CD4⁺ TIL were positively purified from 21 fresh BC homogenates using Dynabeads CD4 (Life Technologies) with the remaining non-CD4 cells also included for analysis (Gu-Trantien *et al.*, 2013).

Quantitative PCR

RNA was extracted using RNeasy FFPE kit (Qiagen) or TRIzol Reagent (Invitrogen) for FFPE samples and sorted cells, respectively, before reverse transcription to cDNA using High Capacity RNA-to-cDNA kit (Life Technologies). Dr. Christos Sotiriou and his group, Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Brussels, Belgium, kindly provided cDNA samples from some patients in the retrospective series (Table S1; Dedeurwaerder *et al.*, 2011). FFPE samples were preamplified using Taqman PreAmp Master Mix (Life Technologies) before real-time PCR reactions using commercially available Gene Expression Assays (listed in the table below) and TaqMan Universal Master Mix II with UNG (Life Technologies). Sorted cells were analyzed without preamplification using the same primers as previously described (Gu-Trantien *et al.*, 2013; in the table below) and iTaq SYBR Green Supermix with ROX (Bio-Rad). PCR reactions were run on a 7900HT Fast Real-Time PCR System (Life Technologies). House-keeping genes included: *POLR2A, TBP* and *TMBIM4* for FFPE samples, *SDHA, TBP* and *TMBIM4* for CD4-depleted fresh BC cells or *CASC3* for purified CD4⁺ T cell and subpopulations.

Taqman Gene Expression Assays used for FFPE samples							
Gene Na	ene Name Company A		As	say ID	Amplicon Length (bp)		
POLR2	2A Life technologies Hs0017		72187_m1 61				
TBP		Life technologies Hs0042		27621_m1 65			
TMBIN	14	Life technologies	Hs00211390_m1		63		
CXCL1	13	Life technologies	Hs00757930_m1		70		
SyBR Green Gene Expression Assays used for fresh samples							
Gene Na	me	e Company		Assay ID			
TBX2	1	Qiagen		QT00042217			
TMBIN	14	Qiagen		QT00070329			
Primers used for fresh samples							
Gene	ene Forward Reverse						
BCL6	AGC	AGCAAGGCATTGGTGAAGACA		ATGGCGGGTGAACTGGATAC			
CASC3	CAA	CAAGGAAGGTCGTGCTGGTT		ACCAGACCGGCCACCAT			
CXCL13	GAGGCAGATGGAACTTGAGC		CTGGGGATCTTCGAATGCTA				
FOXP3	CTGCCCCTAGTCATGGTGG		CTGGAGGAGTGCCTGTAAGTG				
IFNG	GTTTTGGGTTCTCTTGGCTGTTA		AAAAGAGTTCCATTATCCGCTACATC				
IL10	GCTGGAGGACTTTAAGGGTTACCT		CTTGATGTCTGGGTCTTGGTTCT				
IL21	CATGGAGAGGATTGTCATCTGTC		CAGAAATTCAGGGACCAAGTCAT				
PDCD1	GCCTGGTGCTGCTAGTCTG		GGCATACTCCGTCTGCTCAG				
SDHA	TGGGAACAAGAGGGCATCTG			CCACCACTGCATCAAATTCATG			
TBP	TGCACAGGAGCCAAGAGTGAA			CACATCAC	AGCTCCCCACCA		

In vitro stimulation

Total PBMC from 5 healthy controls were stimulated with plate-bound α CD3/ α CD28 Ab (10 µg/ml each) or Staphylococcal Enterotoxin B (SEB; 500 ng/ml) in X-VIVO 20 (Lonza) for 3-days before analysis by flow cytometry. An α IL2 Ab (1 µg/ml for α CD3/ α CD28 and 10 µg/ml for SEB stimulation conditions, respectively) or TGF β 1 (5 ng/ml) were added at time zero. For IFN γ detection, Brefeldin A (dose recommended by BD Biosciences) was added 4-hours before staining. Reagents are listed in the table below. Fresh BC tumor tissues were stimulated with SEB ± α IL2 Ab for 18-hours in the presence of 0.5x dose of Brefeldin A before mechanical dissociation to obtain a single cell suspension for flow cytometric analysis. The tumor supernatant (SN) equals the initial 3 ml of X-VIVO 20 recovered after the first round of tumor tissue dissociation (ex vivo samples), which was subsequently clarified by centrifugation for 15 min at 13000 g (Gu-Trantien *et al.*, 2013). Frozen tonsil mononuclear cells (n = 3) were briefly B cell-depleted using CD19 MicroBeads (Miltenyi Biotec) before treatment with tumor SN (n = 12) or CXCL13 (10 ng/ml) for 24-hours.

Products used for in vitro stimulation experiments							
Product	Company	Reference	Clone				
αCD3	eBioscience	16-0037	OKT3				
αCD28	BD Biosciences	555725	CD28.2				
Staphylococcal enterotoxin B (SEB)	Sigma-Aldrich	S4881	\searrow				
αIL2	R&D Systems	MAB202	5334				
CD19 MicroBeads	Miltenyi Biotec	130-050-301	\searrow				
CXCL13	R&D Systems	801-CX-025	\searrow				
TGFβ1	R&D Systems	240-B	\searrow				
Brefeldin A	BD Biosciences	555029	\supset				

Public data analyses

RNA sequencing expression data for 1058 BC patients (TCGA, 2012) were downloaded from the TCGA website (<u>https://tcga-data.nci.nih.gov/tcga/</u>) in July 2015. Expression intensities in RPKM were log-2 normalized before the data were used in the frequency plots. Pearson correlation coefficients for each gene with *CXCL13* for the BC subtypes (determined using PAM50 gene signature) were estimated by linear regression analysis.

Statistics

Statistical analysis (except for Cox analysis in Table S1) was performed using GraphPad Prism 6 software. *P* values for 2-group comparisons were generated using a 2-tailed student *t* test with unequal variance, either paired or unpaired depending upon the samples. One-way ANOVA was applied for multiple- (more than 2-) group comparisons, either matched or unmatched depending upon the samples. Tukey's or Sidak's tests were used for *P* value correction depending upon the comparisons performed across all or between side-by-side groups, respectively, within each data set. Data associated with the above analyses are represented as mean \pm SEM in all Figures except for paired representations. The linear regression method was used for most of the correlation analyses. When appropriate, nonlinear fits were applied to reach the best fit. *P* values were calculated using correlation coefficients and sample sizes. The log-rank (Mantel-Cox) test was used for calculating *P* values for the survival analyses. Multivariate Cox analysis was performed using R software. *P* values <0.05 are considered significant. Degrees of significance: *P*<0.05 (*), *P*<0.01 (***), *P*<0.001 (***).

Supplemental References:

Bohnhorst JØ, *et al.* Bm1-Bm5 classification of peripheral blood B cells reveals circulating germinal center founder cells in healthy individuals and disturbance in the B cell subpopulations in patients with primary Sjögren's syndrome. J Immunol. 2001;167(7):3610-8.

Buisseret *et al.* Reliability of tumor infiltrating lymphocyte and tertiary lymphoid structure assessment in human breast cancer. Mod Pathol, *in press*.

Cancer Genome Atlas Network, *et al.* Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61-70.

Dedeurwaerder S, *et al.* DNA methylation profiling reveals a predominant immune component in breast cancers. EMBO Mol Med. 2011;3(12):726-41.

Garaud S, *et al.* A simple and rapid protocol to non-enzymatically dissociate fresh human tissues for the analysis of infiltrating lymphocytes. J Vis Exp. 2014;(94).

Green CL, *et al.* B Cells in Health and Disease – Leveraging Flow Cytometry to Evaluate Disease Phenotype and the Impact of Treatment with immunomodulatory Therapeutics. In: Schmid I, eds. Biochemistry, Genetics and Molecular Biology. ISBN 978-953-51-0575-6. InTechOpen; 2012: 61-90.

Gu-Trantien C, *et al.* CD4⁺ follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest. 2013;123(7):2873-92.

Perez-Andres M, *et al.* Primary Health Care Group of Salamanca for the Study of MBL. Human peripheral blood B-cell compartments: a crossroad in B-cell traffic. Cytometry B Clin Cytom. 2010;78.

Zirakzadeh AA, *et al.* Multiplex B cell characterization in blood, lymph nodes, and tumors from patients with malignancies. J Immunol. 2013;190(11):5847-55.

Supplemental Figures

Supplemental Figure 1 (Supporting data for Figure 1).

(A) Kaplan-Meier analysis: (top) breast cancer (BC) overall survival rates stratified on CXCL13 gene expression or follicular DC (FDC) positivity; (bottom) BC disease-free and overall survival rates stratified on CXCL13 gene expression for the subgroup of patients receiving adjuvant chemotherapy. (B-D, H) Immunofluorescence (IF) staining of BC tissue sections; the zoomed areas are defined by white boxes. *In some images, the contrast was enhanced by turning down DAPI (gray) intensity. White and yellow scale bars: 100 µm and 10 µm, respectively. (B) CXCL13⁺ (red), CD20⁺ (green) and Ki67⁺ (blue) cells identify germinal centers (GC) containing proliferating (Ki67⁺) CD20⁺ B- tumor-infiltrating lymphocytes (TIL) in the 3 tertiary lymphoid structures (TLS) shown in Figure 1B. (C) Single channel images for the complete TLS shown in Figure 1C. (D) CXCL13⁺ (red) and CD21^{hi} (blue) cells in a tonsil GC. (E) Gating strategies for flow cytometric analysis (CD4⁺ BC TIL in red) and the control images for CXCL13 staining shown in Figure 1D using an isotype control Ab. Low levels of nonspecific CXCL13 control staining are detectable in the viable TIL gate on cells negative for TIL subpopulation markers (ex: CD4⁻). For this reason, samples with <1% CXCL13⁺ cells in the viable TIL gate are considered to be CXCL13^{neg}. This background was higher in the viable non-TIL gate and markedly increased without dead cell exclusion even in the TIL gate. (F) Staining of CXCL13 in conjunction with the pan T cell marker CD3 in the TIL gate. (G) Correlation plot showing % CXCL13⁺ in CD4⁺ and CD8⁺ TIL. (H) IF staining of CXCL13⁺ (red) and CD3⁺ (green) TIL in BC tissues. The yellow arrow indicates infrequently detected CXCL13⁺CD3⁻ TIL.

Figure S2 Gu-Trantien, *et al.*

. ,

Supplemental Figure 2 (Supporting data for Figure 2).

(A) Percentage of PD-1^{hi}ICOS^{int} (left) and PD-1^{int}ICOS^{hi} (right) subpopulations in $CD4^+$ T cells from healthy donor peripheral blood (D-PB; n = 5), breast cancer (BC) patient PB (P-PB; n = 9), mammary reduction tissues (MR; n = 5), benign breast tumors (BT; n = 5), nonadjacent nontumor breast tissues from BC patients (NT; n =10) and BC (n = 40). (B) Flow cytometry dot plots showing CD25 and FOXP3 expression patterns for the 3 PD-1/ICOS-defined CD4⁺ tumor-infiltrating lymphocyte (TIL) subpopulations. (C) CXCR5 expression in PD-1/ICOS-defined CD4⁺ TIL subpopulations: (left) % CXCR5⁺ in each defined subpopulation; (right) % CXCR5⁺CD4⁺ TIL that display a PD-1^{lo}ICOS^{lo}, PD-1^{hi}ICOS^{int} or PD-1^{int}ICOS^{hi} phenotype. (D) T_{FH}X13 cell abundance (% CXCL13⁺ in CD4⁺ TIL) in BC (all or subtypes). BC (all) are also shown in Figure 2C. (E) Percentage of CXCL13⁺ or FOXP3⁺ in CD4⁺ TIL stratified on histological tumor grade. (F) Kaplan-Meier analysis of BC overall survival rates for grade 1 and grade 3 tumors stratified on CXCL13 gene expression. (C-E) One-way ANOVA followed by Tukey's test. P<0.05 (*), P<0.01 (**), P<0.001 (***) and P<0.0001 (****).

%PD-1^{hi}ICOS^{int} in CD4+ TIL

20 10

30 40

0

73 37 62 29 20 CXCL13

60

20 10 %CXCL13⁺

30

Supplemental Figure 3 (Supporting data for Figure 3).

(**A-C**) Immunofluorescence (IF) staining of breast cancer (BC) tissue sections; the zoomed areas are defined by white boxes. IFNγ⁺ (blue) (and CXCL13⁺ [red] in **A**) with T-bet⁺, CD3⁺ or CD8⁺ (green) cells. *In some images, the contrast was enhanced by turning down DAPI (gray) intensity. White and yellow scale bars: 100 µm and 10 µm, respectively. (**B** and **C**) White arrows indicate IFNγ⁺CD3⁻ non-T cells; yellow arrows point to the infrequently detected colocalization of IFNγ with the T cell markers CD3 or CD8. (**D**) Correlation between PD-1^{hi}ICOS^{int}CD4⁺ tumor-infiltrating lymphocytes (TIL; %) and % FOXP3⁺ within this subpopulation. NS = non-significant. (**E**) FOXP3 and CXCL13 expression patterns in Ki67⁺, T-bet⁺ or BCL6⁺ PD-1^{hi}ICOS^{int}CD4⁺ TIL. Blue frames indicate FOXP3⁻CXCL13⁻ cells. (**F**) Correlation between cells (%) expressing CXCL13 and the PD-1^{hi}ICOS^{int}/PD-1^{int}ICOS^{hi} ratio within CD4⁺ TIL. Red zone identifies high T_{FH}X13 TIL levels where the PD-1^{hi}ICOS^{int}/PD-1^{int}ICOS^{hi} ratio S^{hi} ratio is stable. (**D** and **F**) *P*<0.05 (⁺), *P*<0.01 (⁺⁺⁺), *P*<0.001 (⁺⁺⁺⁺) and *P*<0.0001 (⁺⁺⁺⁺⁺).

3

FoxP3

17

4

発売し

4

23

5

С

Supplemental Figure 4 (Supporting data for Figure 4).

(A)(Left) Intracellular and surface CTLA-4 expression in total and PD-1/ICOS-defined CD4⁺ tumor-infiltrating lymphocyte (TIL) subpopulations. Surface ICOS and intracellular CTLA-4 are coexpressed in the majority of CD4⁺ TIL; (right) expression of additional (in addition to Figure 4A) surface markers on CXCL13⁺CD4⁺ TIL. (B)(Left) CXCL13 expression is not detected in unstimulated healthy donor (D-PB) and patient (P-PB) peripheral blood CD4⁺ T cells; (right) expression of T_{FH}/Treg markers CXCL13, CXCR5 and FOXP3 together with the proliferation marker Ki67 in PD-1/ICOS-defined D-PB and P-PB CD4⁺ T cells. (C) CD25 expression on activated (α CD3/ α CD28 Ab or Staphylococcal enterotoxin B [SEB]) D-PB CD4⁺ T cells that express either CXCL13 or FOXP3.

Supplemental Figure 5 (Supporting data for Figure 5).

(A) % FOXP3^{hi} in Staphylococcal enterotoxin B (SEB)-stimulated healthy donor peripheral blood (D-PB) CD4⁺ T cells: (left) \pm TGF β 1; (right) $\pm \alpha$ IL2 blocking Ab. Data in the left and right panels are from independent experiments. (A and D) Paired 2-tailed student t test. (B) Correlation plots showing D-PB CD4⁺ T cells (%) expressing CXCL13 or FOXP3^{hi} after stimulation (aCD3/aCD28 Ab or SEB) with different concentrations of an alL2 Ab. (C)(dot plots) IFNy and CXCL13 expression in stimulated (S) D-PB CD4⁺ T cells $\pm \alpha IL2$ Ab; (graph) IFNy or CXCL13 single or double positive cells (%) in unstimulated (NS) and stimulated cells $\pm \alpha IL2$ Ab (the latter shown in the dot plots). (A, C, G) α IL2 Ab were used at 1 μ g/ml and 10 μ g/ml, respectively for αCD3/αCD28 Ab and SEB stimulation. (**D**) % IFNy⁺ in CXCL13⁺CD4⁺ T cells induced by stimulation with αCD3/αCD28 Ab or SEB. (E)(left) PD-1 and ICOS expression on stimulated D-PB CD4⁺ T cells does not define distinct subpopulations corresponding to those in BC TIL; (right) IFNy and CXCL13 expression are enriched in the gate area of PD-1^{hi}ICOS^{hi} cells, which is most pronounced in the SEB-stimulated cells. (F)(dot plots)(left) Gating strategies defining 4 subpopulations with different intensities of FOXP3 expression after SEB stimulation of D-PB CD4⁺ T cells and (middle) IFNy and T-bet expression in these subpopulations; (graph)(right) IFNy expression in the 4 FOXP3-defined subpopulations in relation to addition of increasing concentrations of α IL2 Ab during stimulation. (G) IFNy and FOXP3 expression in SEB-stimulated CD4⁺ tumor-infiltrating lymphocytes (TIL) ($\pm \alpha IL2 Ab$) from a different BC than that shown in Figure 5F. (A, B, D) P<0.05 (*), P<0.01 (**), *P*<0.001 (***) and *P*<0.0001 (****).

6

Supplemental Figure 6 (Supporting data for Figure 6).

(A) Flow cytometry gating strategies for defining lymphocyte subpopulations in the viable cell gate from breast cancer (BC) tumor homogenates. In some tumors, substantial numbers of CD19⁺ B cells are detected both in the lymphocyte and the nonlymphocyte gates thus we defined "total B-TIL" (found in the viable total cell gate) and "B-TIL" (viable lymphocyte gate) for analysis of specific B cell subpopulations. TIL = tumor-infiltrating lymphocytes. (B)(left) Gating strategies used to define the 2 parameters used for the correlation analysis shown in Figure 6F (images from 2 additional tumors that are not shown in Figure 6D); (right) Ki67 and CXCR5 expression in B-TIL (lymphocyte gate) or total B-TIL (total cell gate). (C) FOXP3 and CXCL13 expression in tonsillar PD-1^{hi}ICOS^{hi} or PD-1^{int}ICOS^{hi} CD4⁺ T cell subpopulations. (E) PD-1⁻CD45RA⁺CCR7⁺CXCR5⁻ naïve CD4⁺ T cells are abundant in tonsils but rare in BC.

Time (months)

С

Supplemental Figure 7 (Supporting data for Figure 7).

(A) Kaplan-Meier analysis: (top) Breast cancer (BC) overall survival rates stratified on the percentage of intratumoral (apart from the more abundant stromal) CD20⁺ Btumor-infiltrating lymphocytes (TIL) (determined by IHC staining); (bottom) BC overall survival rates stratified on *CXCL13* gene expression are shown for comparison. (**B**) CD4⁺ (brown) and CD8⁺ (red) IHC staining of the tertiary lymphoid structure (TLS)-containing tumor bed shown in Figure 7F. Black scale bar: 100 µm. (**C**) *CXCL13* gene expression in BC divided into 3 levels of lymphoid aggregate density (TIL aggregate number [#] scored on CD45 IHC-stained sections) per mm² tumor surface. One-way ANOVA followed by Sidak's test. *P*<0.05 (*), *P*<0.01 (**), *P*<0.001 (****) and *P*<0.0001 (****).