Supplemental Figure 1. Structural Features of p.Gly23Val-MRAS after Twenty Nanosecond Molecular Dynamic Simulations

The corresponding conformations of WT-MRAS (white) vs. p.Gly23Val-MRAS (red) were compared after superimposition using the best RMSD. Circles denote the regions of the protein which the mutation-associated remodeling leads to the State I-to-State II transition, namely Switch I (blue) and Switch II (green). These changes in secondary structure are responsible of the remodeling in the active site and the exposure of surfaces for protein-protein interactions.

Supplemental Figure 2. Remodeling of p.Gly23Val-MRAS after Molecular Dynamic Simulations Cause Exposure of Distinct Interphase Surfaces for Interaction with Effectors

Comparative surface analyses were performed for WT-MRAS (yellow) and p.Gly23Val-MRAS (red) following molecular dynamic simulations. p.Gly23Val-MRAS displays surface changes, particularly at the Switch I (green circle) and II (light blue circle) regions and near the nucleotide (turquoise) binding site. Graphics display the water-accessible surface.

Supplemental Figure 3. Clinical Phenotype of Patient Harboring p.Thr68Ile-MRAS mutation.

- A) The patient at 20 months of age shows sparse hair, tall forehead, apparent hypertelorism and mild ptosis.
- B) The patient at 6 years of age shows thick hair, apparent hypertelorism, mild ptosis, low-set, posteriorly rotated ears and pointed chin.

Supplemental Figure 4. Molecular Modeling of Human WT-MRAS and the Patient's p.Gly23Val-MRAS

- A) The homology-based model of human MRAS, derived from the structure of murine MRAS as a template.
- B) The model of p.Gly23Val-MRAS was generated by in vitro mutagenesis.
- C) The Ramachandran plot performed after energy minimization, for the homology-derived human WT-MRAS protein displays more than 97% of residues within the allowed regions.

Supplemental Table 1. In Silico Analyses of Patient Derived Variants

Tool	G23V-MRAS	C25G-MICAL2	R559Q-MICAL2
PolyPhen2	Probably damaging	Probably damaging	Possibly damaging
Provean	-8.24 (deleterious)	-10.87 (deleterious)	-3.57 (deleterious)
SIFT	0.000 (damaging)	.001 (damaging)	0.093 (tolerated)
Mutation Assessor	3.56 (high)	3.155 (medium)	3.12 (medium)
Fathmm	-1.77 (damaging)	1.04 (tolerated)	-3.55 (damaging)
Align GVGD	109.55 (C65)	158.23 (C65)	42.81 (C35)

$\textbf{Supplemental Table 2}. \ Oligonucleotide \ Primers \ for \ Mutational \ Analysis \ of \ \textit{MRAS}$

Exon	Forward primer (5'-3')	Reverse primer (5'-3')
2	AGCCCTCTGTCTCATTCCA	CCCCACTGAAACCTGTCAA
3	GCAGCAGTGTTGGAGTCTT	GCAGGCCTCTTCCCGGTA
4	TGGGCTGGCTGTGCTATG	TGACCAGGCTACAGCTTTTA
5	TGGGCATTTTTAAGGGTGTAA	TGTGGAGGCCCGCTTCTA
6	TGGGGCTAGGGAGGAGAG	GGGCCAAGGGTTGTGGTTA