Supplemental Figure Legends

Figure S1. Schematic of MYBPC3 transgenic models developed.

(**A**) Mice with a genetically modified knockout first allele of the murine Mybpc3 gene (Mybpc3^{tm1a}) were crossed with the Actb:FIp deleter line to remove the lacZ/Neo transcriptional disruption cassette. The resultant line, Mybpc3^{tm1c}, was then crossed with a Cmv:Cre line to create a germline MYBPC3 null. Alternatively, the Mybpc3^{tm1c} line was crossed with the Tg(Myh6-Cre/Esr1) line to create mice that allowed the conditional disruption of MYBPC3 protein expression after tamoxifen administration. (**B**) Mice with a genetically modified knockout first allele of the murine Mybpc3 gene (Mybpc3^{tm1a}) were crossed with a mouse line that expresses a tamoxifen inducible FIp protein (R26^{FIpoER}). The resulting mouse line allows for conditional reactivation of Mybpc3 protein expression after administration of tamoxifen by FIp recombinase mediated removal of the lacZ/Neo transcriptional disruption cassette.

Figure S2. Comparison of Mybpc3^{tm1a} and Mybpc3^{tm1d} mouse lines.

(A) Measurement of Nppb gene expression at postnatal day 25 (P25) from Ctl (n=3) and Null (n=3) hearts and postnatal day 90 (P90) control (Ctl) (n=4) and conditional MYBPC3 knockout (Null C) (n=4) hearts. BNP expression was normalized to Rpl32 expression. Fold changes are shown relative to respective controls. (B) Western blot of MYBPC3 protein levels in heart lysate from mice with a germline deletion of exon 3-5 of the Mybpc3 gene (Mybpc3^{tm1d}, tm1d) (*top*) and from mice with a knockout first allele of the Mybpc3 gene (Mybpc3^{tm1a}, tm1a) (*bottom*). (C and D) Post-natal day 2 (P2), 7 (P7), and 25 (P25) heart weights (HW) (C) and heart weight to body weight ratios (HW/BW) (D) of wild-type (+/+), Mybpc3 tm1a Null (tm1a/tm1a) and Mybpc3 tm1d Null (tm1d/tm1d) mouse lines. An average of 6 mice per age was used for each group. (E) Beta-galactosidase (β-gal) staining of heart section from P25 Null reactivation mice receiving different amounts of tamoxifen. Presence of β-gal identifies cardiomyoctyes lacking MYBPC3. (F) Quantification of β-gal negative cardiomyocytes. (G) Western blot of MYBPC3 demonstrating reactivation of MYBPC3 after 60 days following injection with tamoxifen at post-natal day 30 (Null R-P30). All results are shown as mean±s.e.m. Statistical analysis performed using an unpaired, 2-tailed Student's t test.

Figure S3. Cardiomyocyte nuclei labeling of control and MYBPC3 null myocardial tissue

(**A**) Immunofluorescence staining of phospho histone H3 (pH H3) (red) in control (CtI) and MYBPC3 null (Null) hearts at postnatal day 2 (P2), 7 (P7), and 25 (P25). Cardiomyocytes were identified with sarcomeric α -actinin (green) with nuclei labeled with DAPI (blue). Scale bars, 100 µm. (**B**) Ki67 (red) staining in P7 hearts identifying Ki67-positive cardiomyocyte nuclei (arrow head) and Ki67-positive non-cardiomyocyte nuclei (arrow). Cardiomyocytes were identified with sarcomeric α -actinin (green) with nuclei labeled with DAPI (blue). Scale bars, 100 µm with sarcomeric α -actinin (green) with nuclei labeled with DAPI (blue). Scale bars, 100 µm with sarcomeric α -actinin (green) with nuclei labeled with DAPI (blue). Scale bars, 100 µm with sarcomeric α -actinin (green) with nuclei labeled with DAPI (blue).

100 µm. (C) pH H3 (red) staining in P7 hearts identifying pH H3-positive cardiomyocyte nuclei (arrow head) and pH H3-positive non-cardiomyocyte nuclei (arrow). Cardiomyocytes were identified with sarcomeric α -actinin (green) with nuclei labeled with DAPI (blue). Scale bars, 100 µm. (**D**) Cardiomyocyte-specific pericentriolar material 1 protein (PCM-1) (red) staining in P25 hearts identifying cardiomyocyte PCM-1-positive nuclei (arrow head) and noncardiomyocyte nuclei (arrow). Cardiomyocytes were identified with sarcomeric α-actinin (green) with nuclei labeled with DAPI (blue). Scale bars, 100 µm. (E) Wheat-germ agglutinin (green) and PCM-1 (red) staining in P25 hearts identifying cardiomyocyte PCM-1-positive nuclei (arrow head) and non-cardiomyocyte nuclei (arrow). Nuclei are labeled with DAPI (blue). Scale bars, 100 µm. (F) Isolectin B4 (red) and PCM-1 (green) staining in P25 hearts identifying cardiomyocyte PCM-1-positive nuclei (arrow head) and endothelial cells (arrow). Nuclei are labeled with DAPI (blue). Scale bars, 100 µm. (G) Ki67 (red) and PCM-1 (green) staining in P7 hearts identifying cardiomyocyte nuclei positive for Ki67 (arrow head). Nuclei are labeled with DAPI (blue). Scale bars, 100 µm. (H) Quantification of PCM-1 and Ki67 positive nuclei in Ctl (n=3) and Null (n=3) hearts. A minimum of 500 PCM-1 positive nuclei per heart were counted. (I) Aurora B (red) and PCM-1 (green) staining in P7 hearts identifying Aurora B in the cleavage furrow of cardiomyocytes. Nuclei are labeled with DAPI (blue). Scale bars, 100 µm. (J) Quantification of PCM-1 and Aurora B cleavage furrow positive nuclei in Ctl (n=3) and Null (n=3) hearts. A minimum of 500 PCM-1 positive nuclei per sample were counted. All results are shown as mean±s.e.m. Statistical analysis performed using an unpaired, 2-tailed Student's t test.

Figure S4. Measurement of cardiomyocyte cell cycle activity in adult mice after condition deletion of MYBPC3.

(**A**) Immunofluorescence staining of Ki67 (red) in postnatal day 90 (P90) Ctl mice and P90 mice that had conditional disruption of MYBPC3 protein expression at post-natal day 30 (Null C). Cardiomyocytes were identified with sarcomeric α -actinin (green) with nuclei labeled with DAPI (blue). Scale bars, 100 µm. (**B**) Quantification of Ki67 positive cardiomyocytes (CM) in Ctl (n=3) and Null C (n=4) hearts (minimum of 4,000 cells per sample). (**C**) Schematic illustration demonstrating how the total number of cardiomyocytes per left ventricular (LV) wall section was calculated. Cardiomyocyte borders were identified by wheat-germ agglutinin staining. Non-cardiomyocytes were excluded based on their smaller size. All results are shown as mean±s.e.m. Statistical analysis performed using an unpaired, 2-tailed Student's t test.

Figure S5. Evaluation of cardiomyocyte apoptosis and cardiomyocyte number after CDK4/6 inhibition from postnatal day 2 to 7.

(**A**) Cardiomyocyte apoptosis was assessed using TUNEL staining of postnatal day 7 (P7) control (Ctl) and MYBPC3 null (Null) hearts from mice exposed to vehicle or 150 mg/kg PD-0332991 from P2 until P7. TUNEL positive cardiomyocytes are identified (red, white

arrowhead) with nuclei labeled with DAPI (blue). Scale bars, 100 µm. (**B**) Quantification of TUNEL positive cardiomyocytes (CM) in Ctl (n=3), Ctl+150 mg/kg PD-0332991 (n=3), Null (n=3), and Null+150 mg/kg PD-0332991 (n=3) hearts sections. (**C**) Hearts from mice treated with 0 or 150 mg/kg PD-0332991 were stained for wheat-germ agglutinin to identify cardiomyocyte boarders. Scale bars, 100 µm. (**D**) Cardiomyocytes per field from 0 mg/kg (n=3) and 150 mg/kg (n=3) PD-0332991 treated MYBPC3 null mice at P7. (**E**) Heart weights of Ctl (n=10), Ctl+75 mg/kg PD-0332991 (n=10), Ctl+150 mg/kg PD-0332991 (n=7), Null (n=7), Null+75mg/kg PD-0332991 (n=5), and Null+150 mg/kg PD-0332991 (n=5) mice. (**F**) Body weights of Ctl (n=10), Ctl+75 m/kg PD-0332991 (n=10), Ctl+150 mg/kg PD-0332991 (n=7), Null (n=7), Null+75mg/kg PD-0332991 (n=5), and Null+150 mg/kg PD-0332991 (n=5) mice. All results are shown as mean±s.e.m. Statistical analysis performed using an unpaired, 2-tailed Student's t test.

Figure S6. Measurement of cardiac structure in MYBPC3 Null mice exposed to CDK4/6 inhibitor.

(**A**) M-mode echocardiography images of postnatal day 7 (P7) Ctl and Null mice exposed to vehicle or 150 mg/kg PD-0332991 from P2 to P7. (**B-D**) (**B**) interventricular septal thickness at end diastole (IVSd), (**C**) left ventricular posterior wall thickness at end diastole (LVPWd), and (**D**) left ventricular internal diameter at end diastole (LVIDd) of Ctl (n=7), Ctl+150 mg/kg PD-0332991 (n=4), Null (n=8), and Null+150 mg/kg PD-0332991 (n=6) mice. All results are shown as mean±s.e.m. Statistical analysis performed using an unpaired, 2-tailed Student's t test.

Conditional Reactivation

Β.

C.

D.

Tamoxifen (mg/kg)

Blue: β-gal

С.

F.

I.

Red: Ki67 Green: Sarcomeric α-Actinin Blue: DAPI

D.

G.

Red: pH H3 Green: Sarcomeric α-Actinin Blue: DAPI

Red: PCM-1 Green: Sarcomeric α-Actinin Blue: DAPI

Ε.

Β.

Red: PCM-1 Green: WGA Blue: DAPI

Red: isolectin B4 Green: PCM-1 Blue: DAPI

Red: Ki67 Green: PCM-1 Blue: DAPI

Cardiomyocyte Non-cardiomyoyte Cleavage Furrow Cleavage Furrow

Red: PCM-1 Green: Aurora B Blue: DAPI

Α.

Β.

Red: Ki67 Green: Sarcomeric α-Actinin Blue: DAPI

С.

N.S.

150

N.S.

N.S.

• Ctl

Null

• Ctl Null

Β.

С.

D.

Supplemental Table 1. List of oligonucleotide primer sequences used for qRT-PCR.

Murine Gene	Forward Primer	Reverse Primer
Ccnd1	ACCTGGATGCTGGAGGTCT	CAGGCGGCTCTTCTTCAA
Ccnd2	CCACCTGGATGCTAGAGGTC	CCAAGAAACGGTCCAGGTAA
Ccne1	CGTCTTGAATTGGGGCAATA	AGCCAATCCAGAAGAACTGC
Ccne2	TTTAAGCTGGGCATGTTCAC	CCTCATCTGTGGTTCCAGGT
Ccna1	TGCTGGATTTCAACACAGTTTC	CCGTTACGTTAATCACATCTGAAC
Ccna2	CCTTAGGGAAATGGAGGTTAAA	TCTTCTCCCACCTCAACCAG
Ccnb1	GGCTGCTTCAGGAGACCAT	TGCAATAAACATGGCCGTTA
Ccnb2	CTCAAAAGCCGGAGAGGTG	CCTGAGAAGGATGGTAGTGC
Ccnb3	GTGCAAAAGAAACTGAGATAACCAT	AGACGTCTTTGGCATATATAGTGTT
Cdkn1a	GCAGACCAGCCTGACAGATT	CTGACCCACAGCAGAAGAGG
Nppb	GGTCCAGCAGAGACCTCAAA	AACAACTTCAGTGCGTTACAGC
Rpl32	CACCAGTCAGACCGATATGTGAAAA	TGTTGTCAATGCCTCTGGGTTT