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ONLINE SUPPLEMENTARY MATERIALS AND METHODS 8 

 9 

Ex vivo methods 10 

Subject recruitment 11 

Patients with chronic obstructive pulmonary disease (COPD) were recruited; defined by a 12 

previous smoking history and fixed airflow limitation on spirometry with an forced 13 

expiratory volume in 1 second (FEV1) / forced vital capacity (FVC)  ratio < 70%, and FEV1 14 

< 80% predicted and classified by the GOLD criteria (1). Those with GOLD Stage III 15 

(severe COPD) FEV1 30 – 50% were included. All COPD subjects were ex-smokers (at 16 

least one year abstinent) and none were using inhaled corticosteroids for two weeks before 17 

bronchoscopy. Healthy non-smoking controls and current smokers without COPD with no 18 

evidence of airflow obstruction, bronchial hyper-responsiveness to hypertonic saline 19 

challenge, or chronic respiratory symptoms were also recruited. A clinical history, 20 

examination and spirometry were performed on all individuals. At the time of recruitment 21 



 2 

no subject had symptoms of an acute respiratory tract infection for the preceding four 1 

weeks. None were diagnosed with cancer. All subjects gave written informed consent. 2 

 3 

Viruses 4 

Human influenza A viruses (IAVs) A/Wellington/43/2006 (H3N2), A/Auckland/1/2009 5 

(H1N1), were obtained from the WHO Collaborating Centre for Reference and Research on 6 

Influenza (Victoria, Australia) (2). Virus stocks were propagated in Madin-Darby canine 7 

kidney (MDCK) cells (American Type Culture Collection (ATCC), USA). Virus titers were 8 

determined by plaque assay on MDCK cells (3, 4). 9 

 10 

Cell culture and IAV infection 11 

Human primary bronchial epithelial cells (pBECs) were obtained by endobronchial 12 

brushing during fiber-optic bronchoscopy in accordance with standard guidelines (5). 13 

pBEC were cultured as described previously (3, 4, 6, 7). Virus was diluted in serum free 14 

medium and added to cells at a multiplicity of infection of five. After 1hr incubation, 15 

inocula were removed and replaced with serum-free medium.  16 

 17 

A20 plasmid, siRNA and microRNA(miR)-125a and b antagomiRs and mimetics 18 

A20 gene was amplified by PCR using the forward primer containing XbaI (5'-19 

aaattctagagccgccaccATGGCTGAACAAGTCCTTCCTC-3') and reverse primer containing 20 

EcoRI (5'- gcgcgaattcTTCTGTCAATGTGAACATGTTCAG -3'). The restriction sites are 21 

italic and underlined. The PCR product was cloned into pcDNA3.1 expression vector 22 

(pcDNA-A20). The construct was then transfected into pBECs using Lipofectamine 3000 23 

(Life Technologies, USA) according to the manufacturer’s instructions. For experiments 24 
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using short interfering (si)RNAs, A20-specific siRNAs (Applied Biosystems, USA) were 1 

transfected into cells using siPORT NeoFX transfection agent (Ambion, USA). AllStars 2 

Negative controls (Qiagen, USA) were used as siRNA negative controls. For miR-125a/b 3 

antagomiR and mimetic experiments, anti-hsa-miR-125a and anti-hsa-miR-125b 4 

antagomiRs (Ambion, USA), and miR-125a and miR-125b mimetics (Ambion, USA) were 5 

transfected into cells using siPORT NeoFX transfection agent (Ambion, USA) 24hr before 6 

infection according to manufacturer’s instructions. Anti-miRNA inhibitor negative control 7 

(Qiagen, USA) was used.  8 

 9 

Cloning and mutagenesis of miR-125a/b binding site in MAVS 3`UTR 10 

The fragment spanning the miR-125a/b putative binding site in 3` untranslated region 11 

(UTR) of MAVS was generated by PCR and cloned into a pMIR luciferase vector using 12 

MluI and HindIII cloning sites (italic; Life Technologies, USA). Next, site-directed 13 

mutagenesis was performed to introduce a mutation (TCAàAGT) into the binding site 14 

sequence (shown in bold below). All constructs were sequenced to confirm their identity. 15 

The primers used for PCR amplification and mutagenesis are underlined.  16 

MAVS 3`UTR 17 

ccacgcgtTGTGAACCACAGCTTATCACATGTCTGGAGTTAGGGACCCCACTTAAA18 

GTGAGATTTTGGCTGGAGGTGGTGGATCATACCTATAATCCCAGCACTTTGGGA19 

GACCAAGGCAGAAGGACTGCTTGAGGCCAGGAGTTCAAAACCAGTGTAGGTA20 

ACAGCTAGACCCTATCTCTACAAAAAATTTAAAAATTAGCTGGGTGTGGTGGT21 

ATGTGCCTCAAGTTCCAGCTACTCAGGAGGCTGAGGTGGGAGGATCACTTGAG22 

CACAGGAGTTTGAAGTTACAGTGAGCTATGATGGCACCACTGCACTTCAGCCT23 

AGGCAACAGAGGGAGACCCTGTCTTTAAAGTACATAGAGGTTTTTCACACCAA24 
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CACATCTCTGCCCAGTGTGCCAACATCTGCCACCTGCTATAATAGTACTATAAC1 

ACTCAATATGTAATTAATGTAGTCTCAGGGATGTTATGACAATATGATTACAAC2 

TATCACGTGTGTGCCCAGCCAGGCTCAATGCCCCAGGCTGGGCGAGGTGGGGC3 

AGGGGACACAGCCTAAAATGCCAGGCCTCAGGAAGCCATTTGGTTTAGCAGAC4 

ATTGTTTATTAAAGGAGTTACCTATGCCAGATCGAAGGCCTAAGATGATTAAG5 

ACACTATGAGTGCCTTCAAGTGGTTGGGGACGTTCATGATTGTGGTACAGACA6 

AATAGGCTTTCACATCATTCTTTTATGTAATCATACAACAGATATTTGCACCTA7 

CATGaagcttcg 8 

 9 

Luciferase reporter assay 10 

The constructs described above were co-transfected into HEK293 cells with mimetic pre-11 

miR-125a, pre-miR-125b, or pre-miR scrambled control (Applied Biosystems, USA) using 12 

Lipofectamine 3000 (Life Technologies, USA). pRL Renilla control vector (Promega, 13 

USA) was also used. Cells were harvested 48hr after transfection and luciferase activity 14 

was measured using a luminometer (Fluostar Optima, BMG Labtech BMG, Germany). The 15 

luciferase reading of pMIR and mimetics was normalized to the Renilla control for each 16 

sample, and expressed as percentage reduction from miR-scrambled control (8).  17 

 18 

Immunoblotting and cytometric bead array 19 

Infected pBECs were lysed in ice-cold RIPA buffer containing protease inhibitor cocktail 20 

(Roche, UK). Proteins of lysed pBECs and supernatants (5µg) were resolved by SDS-21 

PAGE and transferred onto polyvinylidene fluoride membranes for detection of A20, and 22 

phospho-p65 at Ser536 in the cell lysates using anti-A20 (ab74037, Abcam, UK) and anti-23 

phospho-p65 antibodies (#3031L, Cell Signaling Technology, USA). Glyceraldehyde 3-24 
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phosphate dehydrogenase (GAPDH) was detected as a loading control in cell lysates using 1 

specific antibody (ab181602, Abcam, UK). Interferon (IFN)-β was detected in the 2 

supernatants using specific antibody (ab85803, Abcam, UK). Proteins on membranes were 3 

then visualized by chemiluminescence (Bio-Rad ChemiDoc MP System, CA, USA). All 4 

blots were probed for proteins of interests and then stripped and re-probed for loading 5 

control. The densitometric value of IFN-β was normalized to un-infected media control. 6 

For other intracellular proteins, the densitometric values of all lanes in a blot were first 7 

normalized to the loading control. Values were then expressed as fold change from healthy 8 

media control if comparing between healthy, COPD, and smoker pBECs, or un-treated 9 

control if cells were treated with siRNAs, pcDNA-A20, antagomiR or mimetics. Blots were 10 

run according to the comparisons being made. If comparing between disease groups 11 

(healthy vs COPD vs smoker), then samples from one subject from each group were run on 12 

the same blot and compared with or without infection and between the disease group (ie fig. 13 

S1). The control group was the healthy controls. These were then run for all subjects from 14 

each group. If comparing between experimental conditions such as siRNAs or antagomiR 15 

treatment, samples from one subject with all experimental controls were run on the same 16 

blot (fig. S2B/C/D). The experimental control was non-silenced or non-treated (pcDNA-17 

A20). Some blots were cut at appropriate protein molecular weights so that multiple 18 

proteins of interests could be detected at the same time. Blots were stripped and re-probed 19 

only once to avoid high backgrounds. Human IL-6, CXCL-8, TNF-α, and IL-1β 20 

concentrations were determined by cytometric bead array using a FACSCanto II flow 21 

cytometer (BD Biosciences, USA) according to the manufacturer’s instructions. IFN-λ1 22 

was measured by ELISA according to the manufacturer’s instructions (R&D Systems, 23 

USA).  24 
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 1 

Immunoprecipitation 2 

Ago2 was immunoprecipitated from transfected HEK293 cells using anti-Ago2 antibody 3 

(ab32381, Abcam, UK) protein-A conjugated Dynabeads (Life Technologies, USA) 4 

according to the manufacturer’s instructions.  5 

 6 

miRNA extraction and analysis 7 

Extraction of total RNA from infected pBECs was performed with miRNeasy Mini Kits 8 

(Qiagen, USA) according to the manufacturer’s instructions. Total RNAs (200ng) were 9 

reverse transcribed to cDNA and amplified using miR-125a or b specific primers (Qiagen, 10 

USA) and qPCR. RNU6B was used as the reference gene. Expression levels of miRNAs 11 

were calculated relative to RNU6B using the 2-∆∆Ct method, and were analyzed as fold 12 

change induction over media controls. 13 

 14 

In vivo methods 15 

Experimental mice  16 

Six to eight-week old female BALB/c mice were used in all the experiments. Animals were 17 

obtained from The University of Newcastle Animal Services Unit and were given access to 18 

food and water ad libitum. Animals were housed in a specific pathogen-free facility with 19 

controlled environment of 14h/10h light/dark cycles. 20 

 21 

Cigarette smoke exposure 22 

Mice were exposed to the smoke from 12x3R4F reference cigarettes (University of 23 

Kentucky, USA) twice per day, five times per week, for eight weeks using a custom-24 
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designed and purpose-built specialized nose-only, directed flow inhalation and smoke-1 

exposure system contained in a laminar flow and smoke-extraction unit (CH Technologies) 2 

(9-15). Non-smoking control mice were exposed to normal air for the same period of time.  3 

 4 

IAV infection and antagomiR treatment 5 

On the last day of smoke exposure, mice were anesthetized with isoflurane and infected 6 

intranasally with eight plaque forming units (PFUs) of the mouse-adapted A/PR/8/34 in 7 

50µl of media (UltraMDCK, Lonza) (16, 17). Controls were sham-inoculated with media. 8 

The miR-125a and b sequences were downloaded from miRBase University of Manchester, 9 

UK (http://www.mirbase.org/). miR-125a and b and scrambled antagomiR control 10 

(nonspecific RNA VIII, BLAST searched against the mouse genome) were designed and 11 

purchased from Sigma-Aldrich. The sequences of the antagomiRs were: 12 

5’mU.*.mC.*.mA.mA.mC.mA.mU.mC.mA.mG.mU.mC.mU.mG.mA.mU.mA.mA.mG.*.13 

mC.*.mU.*.mA.*.3’-Chl, where (m) denotes 2’-O-methyl-modified nucleotides, (*) 14 

denotes phosphorothioate linkages, and (–Chl) denotes hydroxyprolinol-linked cholesterol. 15 

Mice were treated with antagomiR (50µg delivered in 50µL sterile saline i.n.) or an 16 

equivalent amount of scrambled control as described previously (18, 19). In each 17 

experiment, following IAV inoculation, smoking was discontinued to remove the effects of 18 

acute smoke exposure, and mice were sacrificed at 7 days post infection.  19 

 20 

Histopathology and immunohistochemistry 21 

Mice lungs were perfused, inflated, formalin-fixed, paraffin-embedded and sectioned (4-22 

6µm). Sections were then stained with hematoxylin and eosin and histopathology score was 23 

performed as previously described (20-24). Sections were also stained with anti-A20 24 
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antibody (Abcam, UK) and followed by anti-rabbit horseradish peroxidase-conjugated 1 

secondary antibody (R&D Systems). The images were viewed under a light microscope 2 

(Olympus, Japan). To assess A20 in mouse lung sections, slides were incubated with Anti-3 

A20 antibody (ab74037, Abcam, UK) at 4°C overnight, followed by anti-rabbit horseradish 4 

peroxidase-conjugated secondary antibody (VC002-025, R&D systems, 37°C, 30min). 5 

Diaminobenzidine (DAB, DAKO) was applied on slides and hematoxylin was used as a 6 

counterstain. Photomicrographs were taken and images evaluated with image J (version 7 

1.47) (25, 26). Briefly, airways were divided into three categories according to the 8 

perimeter of their basement membrane (Pbm): Pbm ≤1 mm (small), Pbm ≤2 mm (medium) 9 

and Pbm > 2mm (large) (27). At least 6 small airways per mouse were blind-selected and 10 

examined with a light microscope (BX41, Olympus). The A20 area and width of Pbm were 11 

manually measured using Image J. The A20 area was normalized to the Pbm.  12 

 13 

Immunoblotting and cytometric bead array 14 

Whole lung tissues were lysed in RIPA buffer supplemented with protease inhibitor 15 

cocktail (Roche). The supernatants containing the protein fraction were collected. Proteins 16 

(40µg) were resolved by SDS-PAGE and transferred onto polyvinylidene fluoride 17 

membranes for detection of A20, phospho-p65, and IFN-β. β-actin was detected as a 18 

loading control. Mouse IL-6, KC, TNF-α, and IL-1β concentrations were determined by 19 

cytometric bead array using a FACSCanto II flow cytometer (BD Biosciences, USA) 20 

according to the manufacturer’s instructions. 21 

 22 

Statistical analysis. When data were normally distributed they were expressed as mean ± 23 

standard error of mean (SEM). Data were analyzed using nonparametric equivalents and 24 
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summarized using the median and inter-quartile range (IQR) when non-normally 1 

distributed. Multiple comparisons were first analysed by the Kruskal Wallis test and then 2 

by individual testing if significant. A p-value of < 0.05 was considered significant. The 3 

study was approved by the University of Newcastle Human and Animal Research Ethics 4 

Committee. 5 

6 
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