|                | UNIGENE | INIGENE GENE NAME |                                                    |                                                           | MG                      | rMSC  | cMSC         |
|----------------|---------|-------------------|----------------------------------------------------|-----------------------------------------------------------|-------------------------|-------|--------------|
|                |         |                   |                                                    |                                                           | (/CTRL)                 | (/MG) | (/MG)        |
|                | PTPRC   | CD45              | Protein tyrosine phosphatase, receptor type, C     | in hematopoietic cells                                    |                         |       |              |
|                | CD20    | CD20              | CD20 molecule                                      | in B cells                                                | $\uparrow\uparrow$      |       | $\checkmark$ |
|                | CD4     | CD4               | CD4 molecule                                       | in Taux cells                                             |                         |       |              |
| SETS           | CD8A    | CD8               | D8a molecule in Tc cells                           |                                                           |                         |       |              |
| SUB            | NCAM1   | CD56              | Neural cell adhesion molecule 1                    | nolecule 1 in NK cells                                    |                         |       |              |
| ELL            | ITGAM   | CD11b             | Integrin, alpha M                                  | in monocytes                                              | $\downarrow \downarrow$ |       |              |
|                | CD14    | CD14              | CD14 molecule                                      | in macrophages                                            |                         |       |              |
|                | CD1D    | CD1D              | CD1d molecule                                      | in NKT cells                                              |                         |       |              |
|                | PECAM1  | CD31              | Platelet endothelial cell adhesion molecule 1      | endothelial cell adhesion molecule 1 in endothelial cells |                         |       |              |
| IPTION FACTORS | PAX5    | PAX5              | Paired box 5                                       | in naives B cells                                         |                         |       |              |
|                | XBP1    | XBP1              | X-box binding protein 1                            | plasma B cells differentiation                            |                         |       |              |
|                | IRF4    | IRF4              | Interferon regulatory factor4                      | immune response regulation                                | $\downarrow \downarrow$ |       |              |
|                | BCL6    | BCL6              | B-cell CLL/lymphoma 6                              | transcription factor TFH                                  | 1                       |       |              |
|                | TBX21   | t-bet             | T-box 21                                           | transcription factor TH1                                  |                         |       |              |
| ISCR           | GATA3   | GATA3             | ATA binding protein 3 transcription factor TH2     |                                                           | 1                       |       |              |
| <b>TRAN</b>    | RORC    | RORc              | RAR-related orphan receptor C                      | transcription factor TH17                                 |                         |       |              |
|                | FOXP3   | FOXP3             | Forkhead box P3                                    | transcription factor Treg                                 |                         |       |              |
| NO<br>S        | PRDM1   | BLIMP1            | PR domain containing 1, with ZNF domain            | plasma B cells differentiation                            |                         |       |              |
| ZATI           | STAT1   | STAT1             | Signal transducer and activator of transcription 1 | transcription factor TH1                                  |                         |       |              |
| NALI.          | STAT4   | STAT4             | Signal transducer and activator of transcription 4 | transcription factor TH1                                  |                         |       |              |
| SIG            | STAT6   | STAT6             | Signal transducer and activator of transcription 6 | transcription factor TH2                                  | <b>^</b>                |       |              |

|                         | UNIGENE | GENE NAI | ME                                          |                         | MG<br>(/CTRL) | rMSC<br>(/MG) | cMSC<br>(/MG)         |
|-------------------------|---------|----------|---------------------------------------------|-------------------------|---------------|---------------|-----------------------|
|                         | CTLA4   | CD152    | cytotoxic T-lymphocyte-associated protein 4 | on T cell, coinhibitor  |               |               |                       |
| :ULES                   | CD80    | B7-1     | CD80 molecule                               | on APC                  |               |               |                       |
|                         | CD86    | B7-2     | CD86 molecule                               | on APC                  | 1             |               |                       |
| DIEC                    | ICOSLG  | CD275    | Inducible T-cell co-stimulator ligand       | on APC, costimulator    |               |               |                       |
| γW                      | ICOS    | ICOS     | Inducible T-cell co-stimulator              | on T cell               |               |               |                       |
| SOR                     | CD40L   | CD154    | CD40L molecule                              | on T cell, costimulator |               | $\checkmark$  | $\downarrow \uparrow$ |
| ACCES                   | CD40    | CD40     | CD40 molecule                               | on APC cell             | <b>^</b>      | $\checkmark$  | $\downarrow \uparrow$ |
|                         | PD-L1   | CD274    | Programmed death-ligand 1                   | on APC, costimulator    | <b>^</b>      |               | $\downarrow \uparrow$ |
|                         | CD55    | CD55     | CD55 molecule                               | complement regulator    |               |               | <b>^</b>              |
| ID ACTIVATION MOLECULES | MKI67   | MKI67    | Marker Of Proliferation Ki-67               | proliferating cells     |               |               | $\downarrow \uparrow$ |
|                         | CCNB1   | cyclinB1 | Cyclin B1                                   | G2/M specific           | $\checkmark$  |               |                       |
|                         | CCNE1   | cyclinE1 | Cyclin E1                                   | G1/S specific           |               |               |                       |
|                         | BCL2    | BCL2     | B cell lymphoma 2                           | anti apoptotic          | 1             |               |                       |
|                         | FAS     | FAS      | Fas (TNF receptor superfamily, member 6)    | apoptose                |               |               |                       |
|                         | CD69    | CD69     | CD69 molecule                               | activation              | <b>^</b>      |               |                       |
|                         | CD25    | CD25     | CD25 molecule                               | activation              |               |               |                       |
| E Al                    | CD38    | CD38     | CD38 molecule                               | activation              |               |               |                       |
| CYCL                    | CD27    | CD27     | CD27 molecule                               | activation              |               |               |                       |

|       | UNIGENE  | GENE NAME                                      |                                                           |                                                            |                         |       | cMSC                    |
|-------|----------|------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|-------------------------|-------|-------------------------|
|       |          |                                                |                                                           |                                                            | (/CTRL)                 | (/MG) | (/MG)                   |
|       | TNFSF13B | BAFF                                           | Tumor necrosis factor (ligand) superfamily, member 13B    | chemokine (GC)                                             | $\uparrow \uparrow$     |       | $\downarrow \downarrow$ |
|       | TNFSF13  | APRIL                                          | Tumor necrosis factor (ligand) superfamily, member 13     | chemokine (GC)                                             | 1                       |       |                         |
|       | CXCL13   | CXCL13                                         | Chemokine (C-X-C motif) ligand 13 chemokine (GC)          |                                                            |                         |       |                         |
| 6     | CXCR3    | CXCR3                                          | Chemokine (C-X-C motif) receptor 3 chemokine receptor     |                                                            |                         |       |                         |
| TORS  | CXCR5    | CXCR5                                          | Chemokine (C-X-C motif) receptor 5                        | Chemokine (C-X-C motif) receptor 5 chemokine receptor (GC) |                         |       |                         |
| CEP   | CCR6     | CCR6                                           | Chemokine (C-C motif) receptor 6                          | chemokine receptor (TH17)                                  |                         |       |                         |
| S RE  | CCR8     | CCR8                                           | Chemokine (C-C motif) receptor 8 chemokine receptor (Th2) |                                                            | 1                       |       |                         |
| KINE  | CCR9     | CCR9                                           | Chemokine (C-C motif) receptor 8 chemokine receptor       |                                                            |                         |       |                         |
| IOM   | IL1B     | IL1b                                           | Interleukin 1, beta interleukin, proinflamma              |                                                            |                         |       |                         |
| CHE   | IL2      | IL2                                            | Interleukin 2                                             | interleukin                                                | <b>^</b>                |       |                         |
| AND   | IL6      | IL6                                            | Interleukin 6                                             | interleukin (Th1)                                          | <b>^</b>                |       |                         |
| NES / | IL10     | L10 IL10 Interleukin 10 interleukin (Th2)      |                                                           | interleukin (Th2)                                          |                         |       |                         |
| OKI   | IL17A    | IL17A IL17A Interleukin 17A interleukin (Th17) |                                                           | interleukin (Th17)                                         | <b>^</b>                |       |                         |
| HEM   | IL21     | IL21                                           | Interleukin 21 interleukin (TFH)                          |                                                            | $\downarrow$            |       |                         |
| Ċ     | IL7R     | IL7R                                           | Interleukin 7 receptor interleukin receptor               |                                                            | <b>^</b>                |       |                         |
|       | IL17RA   | IL17RA                                         | Interleukin 17 receptor A                                 | interleukin receptor                                       | $\downarrow \downarrow$ |       |                         |
|       | IFNG     | IFNg                                           | Interferon, gamma                                         | cytokine (Th1)                                             | <b>^</b>                |       |                         |
|       | TNFA     | TNFa                                           | Tumor necrosis factor                                     | cytokine (Th1)                                             | <b>^</b>                | 4     | $\downarrow \downarrow$ |

**Global assessment of genes involved in activation, differentiation, and migration in the xenogeneic thymus.** The gene expression was analyzed by real-time PCR in human grafted thymus samples. Three housekeeping genes (GAPD, GUSB, and PPIA) were used for normalization. Among the 57 genes explored, more than 20 were deregulated in the MG group compared to the CTRL group. Several of them were regulated after cMSC treatment. A single arrow, p<0.10, double arrow, p<0.05. Statistical analysis was performed by Student t test to compare CTRL to MG group, and by ANOVA test to compare MG, rMSC and cMSC groups.

| Abs      | Conjugate | Host  |       | Reactivity | Clone | Supplier         |                     |
|----------|-----------|-------|-------|------------|-------|------------------|---------------------|
| CD45     | efluor450 | mouse | lgG1  | human      | HI30  | eBioscience      | San Diego, CA, USA  |
| CD4      | FITC      | mouse | lgG1  | human      | MT310 | Dako             | Trappes, France     |
| CD8      | APC       | mouse | lgG2a | human      | okt8  | eBioscience      | San Diego, CA, USA  |
| CD19     | FITC      | mouse | lgG1  | human      | HIB19 | eBioscience      | San Diego, CA, USA  |
| LiveDead | IR        |       |       |            |       | LifeTechnologies | Saint-Aubin, France |
|          |           |       |       |            |       |                  |                     |

List of Abs used in flow cytometry experiments

| Abs         | Conjugate | Host   |       | Reactivity | Clone      | Supplier   |                   |
|-------------|-----------|--------|-------|------------|------------|------------|-------------------|
| Cytokeratin | purified  | mouse  | lgG1  | human      | EA1/EA3    | Dako       | Trappes, France   |
| Cytokeratin | purified  | mouse  | lgG1  | human      | MNF116     | Dako       | Trappes, France   |
| Fibronectin | purified  | rabbit | -     | human      | polyclonal | Dako       | Trappes, France   |
| CD21        | FITC      | mouse  | lgG1  | human      | BL13       | immunotech | Marseille, France |
| CD4         | FITC      | mouse  | lgG1  | human      | MT310      | Dako       | Trappes, France   |
| CD8         | FITC      | mouse  | lgG1  | human      | DK25       | Dako       | Trappes, France   |
| KI-67       | purified  | rat    | lgG1  | human      | 5D7        | AbCam      | Cambridge, UK     |
| LaminA/C    | purified  | mouse  | lgG2b | human      | 636        | Leica      | Newcastle, UK     |

| Secondary Abs | Conjugate | Host    | Reactivity | Supplier         |                     |
|---------------|-----------|---------|------------|------------------|---------------------|
|               | alexa 488 | chicken | rat        | LifeTechnologies | Saint-Aubin, France |
|               | alexa 488 | donkey  | rabbit     | LifeTechnologies | Saint-Aubin, France |
|               | alexa 488 | goat    | mouse      | LifeTechnologies | Saint-Aubin, France |
|               | alexa 594 | donkey  | rat        | LifeTechnologies | Saint-Aubin, France |
|               | alexa 594 | chicken | mouse      | LifeTechnologies | Saint-Aubin, France |
| DAPI          | blue      | -       | -          | Dako             | Trappes, France     |

List of Abs used in IHC experiments





#### Supplemental Figure S1. NSG-MG model characterization

**A-E. Human Anti-AChR Abs kinetics in mice.** A. The curves represent the mean value of human AChR-specific Abs titers (nmol/L) measured by RIA in the serum of mice grafted with thymus fragments from MG patients (day 7: 8 mice, 2 experiments; day 21: 27 mice, 8 experiments; day 28: 36 mice, 10 experiments; day 35: 11 mice, 3 experiments and day 42: 16 mice; 4 experiments). **The titers reach a plateau 3 to 4 weeks after graft.** B-E. Four individual experiments are shown. The curves represent the value of human AChR-specific Abs titers in the serum of each mice in a given graft experiment (Exp1 to 4).

**F. MG severity is relatively similar in MG low and MG high mice.** MG mice were clinically scored as described in MM. Each symbol represents one mouse (MG low, closed squares, n=18 and MG high, closed diamonds, n=31) and red bars represent the median value in each group.

**G.** Corticosteroid-treated patients do not display a correlation between the patient score and the mouse score (r2=0.09). Each symbol represents the score of MG patient and the corresponding mean score attributed in mice for each experiment (open circle = treated patients). While untreated patients have a good correlation between their clinical score in the patient and the mouse (Fig 1F), this is not the case for treated patients. The likely explanation is the discontinuation of the treatment in the mice after grafting. Indeed some patients (MG4 and MG11) had a good MG score under treatment but had a significant clinical score in mice.



## Supplemental Figure S2. Human cells home in the spleen of mice

Immunohistochemistry was performed on spleen sections showing human cells (laminA/C positive cells, in green) and the nucleus in blue (DAPI coloration) in two mice (A and B) grafted with the same MG thymus. Control sections with secondary antibody were negative (not shown).

#### Mice weight changes



## Supplemental Figure S3. MSC treatment promoted animal weight gain.

Data are normalized using each mice weight before treatment. Symbols represent the mean value  $\pm$  SEM of the weight change at the indicated time point for the MG group (n=18 to 20), for the rMSC group (n=16 to 19) and for the cMSC group (n=14).



Supplemental Figure S4. MSC treatment did not modify T and B cell number in the spleen of MG thymus-grafted animals.

**A. MSC treatment does not modify the percentage of CD45 positive cells in the spleen.** FACS analysis of human CD45 expression among splenocytes in MG (n=19), rMSC (n=15) and cMSC (n=13) groups. Histograms represent the mean value ± SEM for each group.

**B. MSC treatment does not modify the percentage of T and B cells in the spleen.** FACS analysis of human CD4, CD8 and CD19 expression among splenocytes in MG (n=15), rMSC (n=13) and cMSC (n=13) groups. Histograms represent the mean value ± SEM for each group.

**C. MSC treatment does not modify spleen weight of MG thymus-grafted animals.** Spleens of treated (rMSC, n=7; cMSC, n=10) and untreated (MG, n=10) were weighted. Histograms represent the mean value  $\pm$  SEM for each group.

**D. The absolute number of splenocytes correlates with the spleen weight.** Each symbol represents one mouse (n=32), and three experiments are included. P-value is determined using the linear regression test.

**E. MSC treatment does not modify the number of CD45 positive cells in the spleen.** Since the absolute number of cells in the spleen of grafted animals was not numerated in all experiments and it correlates with the spleen weight, we extrapolated the number of CD45 positive cells according to the correlation curve (MG, n=10; rMSC, n=7, and cMSC, n=10). Histograms represent the mean value  $\pm$  SEM for each group (x10<sup>-4</sup>).

**F. MSC treatment does not modify the number of T and B cells in the spleen.** An extrapolated absolute number of CD4, CD8, and CD20 positive cells was calculated according to the correlation curve (MG, n=10; rMSC, n=7 and cMSC, n=10). Histograms represent the mean value  $\pm$  SEM for each group (x10<sup>-4</sup>).



#### **Supplemental Figure S5.**

CD4 (A), CD8 (B) and CD20 (C) mRNA expression were analyzed by q-PCR in xenogeneic thymus. 2<sup>A</sup>- $\Delta$  Ct data of the MG, rMSC and cMSC group are normalized using 2<sup>A</sup>- $\Delta$  Ct mean values of the MG group (levels set at 100%). Each symbol represents the 2<sup>A</sup>- $\Delta$  Ct normalized value of each mouse and bars represent the mean values in each group. P-values were determined according to Mann Whitney t test (MG, n=19; rMSC, n=15; cMSC, n=13)



#### **Supplemental Figure S6**

**Analysis of MSC markers in the grafted thymus**. We used two MSC-expressed markers, Serpin 2 (Crigler et al., 2006) and collagen 6A3 (Harvey et al. 2013) that we analyzed by real-time PCR at the end of the experiment (about 2 months after graft). We first validated that these markers were highly expressed in MSC but not in the human thymus. The ratio of expression MSC/human thymus was higher than 50.

We calculated a mean value of 4 values; each of these markers was normalized to 2 house-keeping genes (GAPD and TBP). For pure cultured MSC, this value was about 110 A.U., while the grafted MG thymus was less than 1.8 A.U. Two months after MSC therapy, only one mouse has a mean value of 8 in the group of cMSC, five mice (1 in the cMSC group, and 4 in the rMSC group) had a value just above the level of controls (grafted MG thymus without MSC therapy), and 18 mice (8 in the cMSC, 10 in the rMSC group) had levels equivalent to controls.

 Harvey, A., Yen, T.Y., Aizman, I., Tate, C., and Case, C. 2013. Proteomic analysis of the extracellular matrix produced by mesenchymal stromal cells: implications for cell therapy mechanism. *PLoS One* 8:e79283.

Crigler, L., Robey, R.C., Asawachaicharn, A., Gaupp, D., and Phinney, D.G. 2006. Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. *Exp Neurol* 198:54-64.