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BACKGROUND. Immune checkpoint blockade improves survival in a subset of patients with non—-small-cell lung cancer
(NSCLC), but robust biomarkers that predict response to PD-1 pathway inhibitors are lacking. Furthermore, our
understanding of the diversity of the NSCLC tumor immune microenvironment remains limited.

METHODS. We performed comprehensive flow cytometric immunoprofiling on both tumor and immune cells from 51
NSCLCs and integrated this analysis with clinical and histopathologic characteristics, next-generation sequencing, mRNA
expression, and PD-L1 immunchistochemistry (IHC).

RESULTS. Cytometric profiling identified an immunologically “hot” cluster with abundant CD8 T cells expressing high

levels of PD-1 and TIM-3 and an immunologically “cold” cluster with lower relative abundance of CD8* T cells and
expression of inhibitory markers. The “hot” cluster was highly enriched for expression of genes associated with T cell
trafficking and cytotoxic function and high PD-L1 expression by IHC. There was no correlation between
immunophenotype and KRAS or EGFR mutation, or patient smoking history, but we did observe an enrichment of
squamous subtype and tumors with higher mutation burden in the “hot” cluster. Additionally, approximately 20% of cases
had high B cell infiltrates with a subset producing IL-10.

CONCLUSIONS. Our results support the use of immune-based metrics to study response and resistance to
immunotherapy in lung cancer.
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BACKGROUND. Immune checkpoint blockade improves survival in a subset of patients with
non-small-cell lung cancer (NSCLC), but robust biomarkers that predict response to PD-1 pathway
inhibitors are lacking. Furthermore, our understanding of the diversity of the NSCLC tumor immune
microenvironment remains limited.

METHODS. We performed comprehensive flow cytometric immunoprofiling on both
tumor and immune cells from 51 NSCLCs and integrated this analysis with clinical and
histopathologic characteristics, next-generation sequencing, mRNA expression, and PD-L1
immunohistochemistry (IHC).

RESULTS. Cytometric profiling identified an immunologically “hot” cluster with abundant CD8* T
cells expressing high levels of PD-1and TIM-3 and an immunologically “cold” cluster with lower
relative abundance of CD8* T cells and expression of inhibitory markers. The “hot” cluster was
highly enriched for expression of genes associated with T cell trafficking and cytotoxic function
and high PD-L1 expression by IHC. There was no correlation between immunophenotype and KRAS
or EGFR mutation, or patient smoking history, but we did observe an enrichment of squamous
subtype and tumors with higher mutation burden in the “hot” cluster. Additionally, approximately
20% of cases had high B cell infiltrates with a subset producing IL-10.

CONCLUSIONS. Our results support the use of immune-based metrics to study response and
resistance to immunotherapy in lung cancer.

FUNDING. The Robert A. and Renée E. Belfer Family Foundation, Expect Miracles Foundation, Starr
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Introduction

The development of therapies that block inhibitory receptors expressed by T lymphocytes has revolu-
tionized cancer treatment. The Food and Drug Administration approved the use of the PD-1 inhibitor
nivolumab for treatment of advanced squamous non-small-cell lung cancer (NSCLC) in March of 2015
(1, 2); this approval was later extended to nonsquamous NSCLC in October of that same year, the same
month that the PD-1 inhibitor pembrolizumab was granted accelerated approval for treatment of advanced
NSCLC expressing the PD-1 ligand PD-L1 (3). Approval of both agents for NSCLC constituted a water-
shed moment for immunotherapy and also for the treatment of lung cancer, which is the second most com-
mon cancer type and the leading cause of cancer death in the United States (4). There are currently over
100 ongoing clinical trials involving PD-1/PD-L1 pathway blockade in NSCLC.

While clinical responses to immunomodulatory agents have been impressive, the field has been striving
to better understand response and resistance to improve patient selection and to aid in the design of rational
combination therapy approaches. Objective response rates to nivolumab treatment of 33% (2), 15% (5), and
20% (6) have been reported for squamous NSCLC; and rates of 12% (2), 17% (7), and 19% (1) for have been
reported for nonsquamous NSCLC. Comparable response rates of 19.4% (3) and 23% (8) have been report-
ed for the PD-1 inhibitor pembrolizumab and the PD-L1 inhibitor atezolizumab, respectively, for either
histological subtype. Higher objective response rates have been observed in NSCLC patients with PD-L1*
tumors, as assessed by immunohistochemistry (IHC) (3, 8), and, in particular, responses were highest in
patients with PD-L1* immune cells (8). However, PD-L1 ITHC has limitations as a diagnostic; the response
rates are generally higher in PD-L1* tumors but approach a maximum of 39% (9) or 45% (3) in tumors
with >50% PD-L1 positivity and some PD-L1- tumors also respond to therapy. The methods to assay and
interpret PD-L1 THC are both diverse and subjective and require further validation, as early results from the
BluePrint PD-L1 Assay Harmonization Study have shown (10).

The immune microenvironment is complex, dynamic, and spatially heterogeneous. There are numerous
immunosuppressive mechanisms in addition to the PD-1/PD-L1 axis, which may explain why an immuno-
logical metric such as PD-L1 IHC positivity is predictive of response to anti-PD-1 therapy in less than half of
patients. T cells are capable of expressing multiple inhibitory receptors concurrently, and this compensatory
upregulation may account for resistance to PD-1 blockade. For instance, it has recently been demonstrated
that the alternative immune checkpoint TIM-3 is upregulated by T cells engaged by anti-PD-1, and this may
explain adaptive resistance to anti-PD-1 therapy (11). Response to checkpoint blockade is also likely affected
by cytotoxic T lymphocyte—extrinsic (CTL-extrinsic) factors as well, such as the presence of myeloid-derived
suppressor cells (MDSCs) and FOXP3* Tregs, the latter of which have been documented in NSCLC (12). The
presence of MDSCs and Tregs in NSCLC is positively correlated with an abundance of IL-10—-producing B
regulatory cells (Bregs); all three are associated with NSCLC progression (13).

Response to anti—PD-1 therapy in NSCLC may also be affected by traditional stratifying criteria, such
as histological subtype, specific oncogenic driver mutations, and smoking history. For instance, low PD-1
expression in the tumor is correlated with KRAS mutation and low PD-L1 expression is correlated with the
presence of EGFR mutations (14). Activating EGFR mutations and adenocarcinomas are more commonly
found in never-to-light smokers as compared with smokers, whereas there is a stronger association between
smoking and the squamous subtype (15). Smoking is known to increase the prevalence of somatic mutations.
Higher mutation rates have been shown to increase the probability that tumors display neoantigens that can
trigger T cell-mediated tumor cell lysis and, by extension, enhance response to checkpoint blockade (16).

It is important to understand the immunological landscape of NSCLC, as this information might reveal
mechanisms of response and resistance to specific immunomodulatory agents and inform future development
of more effective combination approaches. Comprehensive immunoprofiling may enable identification of
robust metrics for determining candidacy to receive specific immunomodulatory therapies, and some approach-
es, including multiplexed slide-based analysis (17) and gene expression profiling (18), have been used to define
components of the NSCLC immune microenvironment, with the goal of developing more robust biomark-
ers beyond PD-L1 THC. To this end, we performed in-depth immunoprofiling by flow cytometry and focused
mRNA profiling of immuno-oncology relevant genes and used a multidimensional cluster algorithm (19, 20) to
determine if distinct immunological subtypes exist in NSCLC and whether these features correlate with muta-
tion status, histological subtype, PD-L1 ITHC, and smoking history. Our studies identified heterogeneity in the
NSCLC immune microenvironment and suggest that different immunotherapy approaches may be needed for
specific subsets of NSCLC patients.

doi:10.1172/jci.insight.89014 2
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Table 1. NSCLC sample characteristics Results

Characteristics of the NSCLC data set. We compiled a data set with clinical
Sample characteristic No. (%) annotation (Table 1) of 51 freshly resected NSCLC samples, including
Total NSCLC cases 51(100%) immunohistochemical determination of PD-L1 status, next-generation
Sex sequencing (21, 22), digital droplet PCR for oncogenic driver mutations,
Male 21(41%) mRNA expression analysis by Nanostring, and comprehensive immu-
Female 29 (57%) noprofiling of dissociated bulk resected tumors by multiparametric flow
Race European descent 43 (84%) f:ytornetry. As part. of our effort to comprehen.si‘vely char?lcterize.the tumor
Asian 2 (4%) immune microenvironment of NSCLC, we utilized multiple antibody pan-
e 3 (6%) els (Supplemental Figure 1; supplemental material available online with this
Unknown 3 (6%) article; doi:10.1172/jci.insight.89014DS1) to determine the abundance of
Histology major immune cell lineages. We focused on the characterization of CD4*
Adenocarcinoma 42 (82%) and CD8* T cells, including their differentiation status (FOXP3, CCR7,
Squamous 7 (14%) CD45RA, CD45R0), expression of activation markers (CD69, CD11a,
Adenosquamous 1(2%) CD38) and inhibitory receptors (PD-1, TIM-3, LAG-3, CTLA-4), and their
L el ) ity (2t i 43 (84%) proliferation (Ki-67). We also used flow cytometry to measure PD-L1 and

Tumor cell*/immune cell* 7 (14%) .
Tumor cell/immune cell 2 (4%) PD-L2 expression or'1 r.nonocytes, gr'anulocytes, ar?d tumor cells (defined as
Tormared Filmre el 5 (10%) CD45 EpCAM?"). Clinical, pathologic, and genomic data are shown for each
Turmor cell-/immune cell- 29 (57%) sample, along with proportions of T cells, B cells, granulocytes, monocytes,
Next-generation sequencing or ddPCR 50 (98%) NK cells, and NT T cells (Figure 1). There was considerable variability in
completed the proportion of immune cells that were CD8* T cells, from 1.4% to 44.6%
KRAS mutation 18 (35%) (mean 11.50% * 1.476%, SEM, Figure 1). Tumors also exhibited marked-
EGFR mutation 7 (14%) ly heterogeneity in total leukocyte infiltrate, with CD45* cells comprising
Nanos'Fring expression analysis completed 25 (57%) percentages as low as 16% or as high as 97.3% of live cells (mean 69.95% *
N_?::fé l:jv\?vriltthc:eegr;?jtj:s;iyc hemotherapy 7 (14%) 3.074%, SEM). Similarly, we observed a high degree of heterogeneity in the

Did not receive neoadjuvant chemotherapy 42 (82%)

Stage (A and B)

Smoking status
>30 pack years
<30 pack years
Current smoker
Former smoker
Never smoker

immune infiltrate across this set of tumors.
We performed unsupervised hierarchical clustering on tumor and

23 (45%) matched normal lung samples using comprehensive immunophenotypic
10 (20%) data (Figure 2). As expected, normal lung tissue samples clustered together
9 (18%) and tumor samples clustered together. We observed a relative absence in
7 (14%) expression of inhibitory receptors by CD4* and CD8* T cells in normal lung

as compared with tumors. It is notable that tumors clustering with normal

;g ((2,79[;/;)) lung displayed high granulocytic infiltrate, which is what we consistently
6 (12% ; observe in normal lung (Figure 2).

0,
33 (65%) We first analyzed major leukocyte lineages based on clinical, genomic,

11 (22%) and histopathologic criteria. We observed no significant difference in the
immune cell subsets in tumors from patients who had never smoked as com-
pared with patients with a history of tobacco use (Figure 3A). There was
also no significant difference when immune infiltrates were compared by

tumor histology, although squamous tumors displayed a slight enrichment (P < 0.05) in granulocytes as
compared with adenocarcinoma (Figure 3B). Furthermore, there were no significant immune cell differenc-
es in KRAS mutant tumors or EGFR mutant tumors or tumors that did not harbor mutations in either of
these genes (Figure 3C). Compared with normal lung, tumors consistently showed a significantly increased
abundance of CD19* B cells, FOXP3* Tregs, CD8" T cells, and particularly CD45RO* memory CD8* T
cells and a significant relative lack of NK cells and NK T cells (Figure 3B). We observed increased CD8*
T cells and memory CD8* T cells in PD-L1* tumors as compared with PD-L1- tumors (Figure 3D). There
was no statistically significant difference in immune cell populations among samples that were PD-L1* in
tumor cells (TC*IC* and TC*IC") compared with those that were PD-L1* only in immune cells (TCIC*)
(Figure 3D).

Due to the use of PD-1 inhibitors for the treatment of NSCLC and the known upregulation of addi-
tional checkpoint receptors that may be associated with resistance to PD-1 therapy (11), we analyzed the
expression of PD-1, TIM-3, CTLA-4, and LAG-3 on CD4" and CD8" T cells. Smoking status did not
significantly correlate with inhibitory receptor expression (Figure 4A and Supplemental Figure 2). There
was significantly increased expression of inhibitory receptors by CD4* T cells in squamous tumors rel-

insight.jci.org  doi:10.1172/jci.insight.89014 3
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Figure 1. Clinical characteristics of NSCLC data set. Major immune cell lineages profiled from 51 NSCLC patients are depicted as the percentage of live cells and
arranged by increasing percentage of CD8* T cells. Colored tile tracks above indicate smoking status, histological subtype, mutant KRAS or EGFR, and PD-L1IHC.
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ative to adenocarcinoma. For CD8* T cells, we observed no significant difference in levels of PD-1 and
TIM-3 in squamous tumors compared with adenocarcinoma, but we did observe significantly elevated
CTLA-4 in squamous tumors. Squamous tumors also displayed significantly increased coexpression of
TIM-3 and PD-1 in both CD8* and CD4" T cells (Supplemental Figure 2). Inhibitory receptor expression
was uniformly higher in tumor samples when compared with normal lung (Figure 4B). In adenocarci-
nomas, KRAS-driven tumors exhibited significantly increased expression of PD-1 on both CD4* and
CD8" T cells relative to EGFR-driven and KRAS/EGFR™ tumors (Figure 4C). Both CD4" and CD8*
T cells from PD-L1* tumors displayed significant upregulation of individual inhibitory receptors and,
similar to what we observed with our analysis by leukocyte lineage (Figure 3D), there were no significant
differences in PD-1, TIM-3, and CTLA-4 expression between PD-L1 TC* and TCIC* tumors (Figure
4D). TC* and TCIC" tumors also had increased coexpression of TIM-3 and PD-1 on CD4* and CD8* T
cells relative to PD-L1- tumors (Supplemental Figure 2). LAG-3 was uniformly not expressed by T cells
across our NSCLC cohort.

NSCLCs cluster into distinct immunophenotypes. With the expanding clinical application of immunomod-
ulatory agents such as PD-1 blockade for treatment of NSCLC, knowledge of the immunophenotype of
the tumor with a high degree of granularity may enable the development of robust biomarkers for patient
selection. We employed the t-distributed stochastic neighbor embedding (t-SNE) multidimensional reduction
algorithm (19, 23) to analyze our multiparametric immunophenotypic data in an unbiased manner. Close
proximity individual NSCLC cases indicate immunophenotypic similarity. Tumor samples separated into
two main groups, which we denoted as immunologically “hot” cluster 1 and immunologically “cold” cluster
2, and a third small group defined by high granulocytic infiltrate (gran+) that we grouped within the “hot”
cluster based on proximity and shared T cell phenotypic markers (Figure 5). The immunologically “hot”
cluster was differentiated by the presence of inflammatory markers, including an abundance of CD8* T cells
and high expression of inhibitory receptors — particularly PD-1 and TIM-3 — on those CD8" T cells (Figure
5, A-C). This cluster was further differentiated by infiltration of FOXP3* Tregs and by expression of PD-L1
on tumor cells and immune cells (Figure 5, D-F). Tumor cell PD-L1 positivity by IHC is directly correlated
with PD-L1 expression on EpCAM?* tumors cells, as detected by flow cytometry (Supplemental Figure 3).

We also observed intracluster heterogeneity, with notable examples indicated by arrows and reference
case numbers (Figure 5, A-C, E, and F). For example, case 78 displayed high CD8* T cell infiltrate with
high coexpression of PD-1 and TIM-3, compared with case 25, which had high CD8* T cell infiltrate with
no expression of PD-1 or TIM-3. Case 23 had high PD-1 expression by CD8* T cells and high PD-L1

doi:10.1172/jci.insight.89014 a4
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Figure 2. Clustering of NSCLC data set. Unbiased hierarchical clustering of 51 NSCLC samples and, where available, matched normal lung (top row).
Immune parameters measured by multicolor flow cytometry are listed. Tiles are shaded by percentage of expression of markers.
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staining on tumor cells but no TIM-3 on CD8" T cells. We observed a highly significant positive correlation
between PD-1 and TIM-3 expression by both CD8" and CD4" T cells (Supplemental Figure 4). There were
no cases in which CD8" T cells expressed TIM-3 and not PD-1, but in approximately 20% of cases CD8*
T cells expressed PD-1 and not TIM-3. It is our hope that multicolor flow cytometry will be employed in
future prospective studies of patients receiving immunotherapy and that the high level of immunopheno-
typic granularity generated by this methodology may help explain heterogeneity in response to anti—PD-1
therapy in NSCLCs and/or tumors with high degrees of lymphocytic infiltrates.

Adenocarcinomas were equally distributed between “hot” and “cold” clusters, whereas squamous
tumors were enriched in the “hot” cluster (Figure 5G). Mutant KRAS and EGFR were not associated with
immunophenotype, even though all 8 EGFR-mutated tumors were PD-L1- by IHC (Figure 5H). Heavy
smokers (>30 pack years) appeared concentrated in the “hot” cluster relative to smokers (<30 pack years)
and never smokers, but this was not statistically significant. We also analyzed smoking status based on pack
years and found a trending correlation (P = 0.11) between immunophenotype and smoking status, with
higher pack year smokers concentrated in the “hot” cluster (Figure 5I).

Forty-two of fifty-one of our cases were profiled by next-generation sequencing (21, 22). A forthcom-

doi:10.1172/jci.insight.89014 5
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Figure 3. Immune cell lineages by clinical features. Percentages of total CD45" cells based on smoking history (A), histological subtype (B), oncogene
status (C), and PD-L1immunohistochemical scoring (D) of tumor cells (TC*) and immune cells (IC*) of major immune cell lineages that vary significantly
between tumors are presented. Data for bar graphs were calculated using unpaired Student’s t test. *P < 0.05; **P < 0.01; ***P < 0.001. Mean with SD.
Two-way ANOVA: smoker vs. never smoker, P = 0.4207; adenocarcinoma vs. squamous, P = 0.0362; adenocarcinoma vs. normal lung, P = 0.6034; squa-
mous vs. normal lung, P = 0.0332; EGFR vs. KRAS, P = 0.1901; KRAS vs. neither, P = 0.9915; EGFR vs. neither, P = 0.2636; TC* vs. IC*, P = 0.9990; TC* vs.
negative, P = 0.0630; IC* vs. negative, P = 0.1667..

ing publication shows that somatic mutational burden quantified from whole-exome sequencing and muta-
tion burden extrapolated from this platform are well correlated (24). We, therefore, used the total number
of mutations from our OncoPanel results as a proxy and found that mutational burden was significantly
higher in tumors in the “hot” cluster (Figure 5J). Mutational burden also correlated with smoking status, as
expected (Supplemental Figure 5).

Immunologically “hot” NSCLC tumors display unique phenotype. The unbiased t-SNE clustering was based

insight.jci.org  doi:10.1172/jci.insight.89014 6
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Figure 4. T cell expression of inhibitory receptors by clinical features. Percentage of expression of inhibitory receptors PD-1, TIM-3, and CTLA -4 by CD4*
T cells (left) and CD8* T cells (right) based on smoking history (A), histological subtype (B), oncogene status (C), and PD-L1immunohistochemical scoring
(D) of tumor cells (TC*) and immune cells (IC*). Data for bar graphs were calculated using unpaired Student’s t test with. *P < 0.05; **P < 0.01; ***P <
0.001. Mean with SD. Two-way ANOVA CD4* T cells: smoker vs. never smoker, P = 0.2314; adenocarcinoma vs. squamous, P < 0.0001; adenocarcinoma vs.
normal lung, P < 0.0001; squamous vs. normal lung, P < 0.0001; EGFR vs. KRAS, P = 0.2450; KRAS vs. neither, P = 0.1272; EGFR vs. neither, P = 0.0619; TC*
vs. IC*, P=0.1038; TC* vs. negative, P < 0.0071; IC* vs. negative, P = 0.3626. Two-way ANOVA CD8* T cells: smoker vs. never smoker, P = 0.0433; adenocarci-
noma vs. squamous, P = 0.0017; adenocarcinoma vs. normal lung, P = 0.0083; squamous vs. normal lung, P < 0.0001; EGFR vs. KRAS, P = 0.0759; KRAS vs.
neither, P = 0.9649; EGFR vs. neither, P = 0.0972; TC* vs. IC*, P = 0.2742; TC* vs. negative, P < 0.0007; IC* vs. negative, P = 0.0025.

on flow cytometric profiling, and, in order to augment our classification of immunologically “hot” and

“cold” tumors, we performed a focused transcriptomic analysis using the Nanostring Human PanCan-
cer Immune Profiling Panel (18). Our “hot” cluster showed significant enrichment in CXCL9, CXCL10,
IDO1, granzyme B, IFN-y, and STAT1, which aligns with the “IFN-y signature” reported elsewhere (25,
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Figure 5. NSCLCs align into immunologically “hot” and “cold” clusters. The t-distributed stochastic neighbor embedding (t-SNE) algorithm assigned
NSCLC cases into 2 clusters (dotted ovals). t-SNE plots are identical by NSCLC case coordinate (i.e., each dot is a case and is in the same place in all 10 plots).
Percentage of CD8* T cells of CD3* lymphocytes (A), percentage of PD-1 expression on CD8* T cells (B), percentage of TIM-3 expression on CD8* T cells (C), and
percentage of FOXP3* Tregs of CD4* T cells (D), with gradient color coding of blue (low) to red (high). Percentage of PD-L1 expression on tumor cells by IHC (E),
percentage of PD-L1expression on immune cells by IHC (F), histological subtype (G), oncogene status (H), and smoking status (1) are overlaid on t-SNE plots.
(J) Mutation burden is shown with gradient color coding of blue (low) to red (high). Vertical scatter plot statistics are analyzed using unpaired Student’s t
test and stacked bar graphs are analyzed by Fisher’s exact test. **P < 0.01; ***P < 0.001. Mean with SD. Light gray circles on t-SNE plots indicate data not
available. Notable examples are indicated by arrows and reference case numbers.

insight.jci.org

26) and validates our flow clustering methodology (Figure 6). This signature has previously been shown to
enrich for tumors responsive to pembrolizumab anti—-PD-1 therapy (25). A fully annotated list of signifi-
cantly upregulated and downregulated genes is available in Supplemental Figure 6.

Given the high concordance among flow cytometry—based t-SNE clustering, PD-L1 THC, histological
classification, smoking history, mutational load, and RNA expression analysis, we sought to find the small-
est combination of immune parameters that recapitulated the features of our larger data set as a means
to simplify biomarker development. The percentage of CD8* T cells positive for TIM-3 expression (P =
7.39E-08), the percentage of CD8" T cells positive for PD-1 expression (P = 2.17E-06), and the abundance
of CD8" T cells (P = 1.06E-04) were among the markers most significantly different between “hot” and
“cold” clusters. We then recalculated the t-SNE plots based on only those 3 markers and found near-perfect
recapitulation of the “hot” and “cold” clusters, with only one case moving from “cold” to “hot”; that one
case displayed the highest percentage of PD-1 and TIM-3 expression by CD8" T cells within the higher-pa-
rameter “cold” cluster (Figure 7A). We conclude that as few as 3 immune parameters, specifically TIM-3
and PD-1 expression on CD8" T cells and presence of CD8" T cells, can be utilized as a proxy to differen-
tiate immunologically “hot” versus “cold” NSCLCs. Furthermore, we propose a model that includes these
criteria as a possible metric to assess favorability to immunotherapy (Figure 7B).

NSCLCs are enriched for CD19" B cells compared with normal lung tissue. We noted high B cell infiltrate
in a subset of tumors, which ranged from 0%-29.7% of total live cells (mean 6.159% * 1.006%, SEM)
(Figure 1). We further analyzed tumor-associated B cells by IHC and flow cytometry. The presence of
B cell-rich tertiary lymphoid structures (TLSs) adjacent to tumor margins is a good prognostic factor
in many cancers, including NSCLC (27). We found abundant TLSs in the tumor sections we surveyed
and that the TLS score correlated well with total CD19* B cell count measured by flow cytometry (Sup-
plemental Figure 7, A-D). We did not, however, see a significant difference in TLSs between “hot” and
“cold” clusters (Supplemental Figure 7E). As part of our flow cytometry B cell profiling, we observed a
small, but reproducible population of CD24"IL-10* Bregs (28) in tumor but not normal lung tissue (Fig-
ure 8A). IL-10 is the only definitive marker for Bregs, but it is difficult to measure by flow cytometry due
to its low intracellular accumulation. To identify additional phenotypic markers for flow cytometry that
could be more sensitive than IL-10 and used as a surrogate for this population, we sorted B cells from
a NSCLC tumor with high B cell infiltrate and also B cells from matched normal lung and generated
RNA sequencing (RNAseq) data with single-cell resolution (29, 30). In total, 130 cells (47 from normal
lung, 83 from tumor) passed our quality control filters. Of these 130 cells, we discovered a total of 9
IL-10-expressing B cells, all of which were sorted from the tumor and were not present in normal lung
tissue. The top 20 most significantly downregulated and upregulated genes are highlighted by P value as
a function of expression (Figure 8B). We did not uncover any novel candidate surface markers that could
be used for future phenotypic identification of these IL-10-producing B cells, nor did we observe an
enrichment for canonical Breg surface markers CD24, CD27, or CD38. We did, however, perform gene-
set enrichment analysis (GSEA) using a rank list of all genes that were significantly downregulated or
upregulated between IL-10-producing and IL-10- B cells and, by this methodology, observed that these
IL-10—producing B cells displayed a transcriptional profile resembling a plasma cell gene signature and
not a naive or memory B cell signature (Figure 8C). IL-10—producing B cells also displayed an activated
MYC signature. We observed a similar ratio of Igk/Igh between normal lung B cells and tumor B cells
and between IL-10" B cells and IL-10" B cells, suggesting the absence of clonality in any of these subsets
(Supplemental Figure 8). This single-cell transcriptomic analysis of B cells provides initial insight into
the biology of NSCLC-associated IL-10—producing B cells.

Discussion

doi:10.1172/jci.insight.89014 9
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_ Figure 6. “Hot” cluster is enriched for
. CXCL10 | CTL/Th1-associated genes. Normalized
mRNA expression of signature genes
is presented for “hot” and “cold” clus-
10 ; - ters. CXCLY (A), CXCL10 (B), IFN-y (C),
[ granzyme B (D), IDO1 (E), STAT1 (F), and
s L] TIM-3 (H) are upregulated and GM-CSF
! | (G) is downregulated in the “hot”
p=0.0001 p<0.0001 cluster relative to the “cold” cluster.
FDR=0.0079 6 FDR=0.007 In violin plots, horizontal lines depict
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quartile range and vertical lines repre-
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value range. P values were calculated
9 with unpaired Student’s t test.
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p=0.035  squamous for CD8* T cells (Figure
2 1 FDR=0.181

hot cold hot

Expression level
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4B). Yet across tumors there are gradi-
ents of T cell infiltrate and expression
of inhibitory receptors.

In addition to analysis of indi-
vidual immunological characteristics on the basis of clinical features, we also analyzed our flow cyto-
metric immunophenotypic data collectively using an unbiased clustering algorithm. The multidimen-
sional reduction methodology t-SNE revealed distinct “hot” versus “cold” clusters (Figure 5). The
“hot” cluster was distinguished by the squamous subtype and high CD8" T cell infiltrate, with high
coexpression of PD-1 and TIM-3 (Supplemental Figure 2). Tumors in this cluster also displayed high
PD-L1 on tumor cells and immune cells by both flow cytometry and PD-L1 IHC, which were highly
correlated (Figure 5, E and F, and Supplemental Figure 3). It is interesting that cases with high gran-
ulocytic infiltrate and, by extension, lower CD8" T cells counts, formed a subgroup within the “hot”
cluster, raising the possibility of granulocyte-associated T cell suppression as a mechanism of immune
evasion in this subset. Our data suggest that the total number of CD8* T cells within the tumor is not
sufficiently predictive of the immunophenotype and that it is important to also know if the T cells
express PD-1, TIM-3, both, or other immune checkpoints. CD8" T cells from granulocyte-high tumors
displayed high PD-1 and TIM-3 expression (Figure 5, B and C), indicating a suppressed antitumor
immune response (Figure 7B).

doi:10.1172/jci.insight.89014 10
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Figure 7. Limited CD8* T cell markers predict NSCLC immunophenotypes. (A) NSCLC cases were reanalyzed using t-distributed stochastic neighbor
embedding (t-SNE) algorithm based on only 3 parameters: percentage of CD8* T cells of CD3* lymphocytes, percentage of TIM-3 expression on CD8* T cells,
and percentage of PD-1expression on CD8* T cells. The structure of “hot” and “cold” clusters matched what was observed for multiparameter clustering.
(B) Proposed model of immunotherapy-favorable immunophenotype of NSCLC based on limited T cell-intrinsic factors.

In order to corroborate our flow-based clustering and IHC data, we also performed mRNA expression
analysis on 29 of our 51 samples. Tumors in the “hot” cluster were enriched for T cell chemoattractants
CXCL9 and CXCL10 and CTL/Thl-associated genes IFN-y and granzyme B (Figure 6). Based on our
immunophenotypic data, the immunologically “hot” subset of NSCLC is characterized by inflammatory
CD8" T cell infiltrate, PD-L1 IHC positivity, and PD-1 and TIM-3 positivity on CD8* T cells and cor-
related with increased tobacco use, high mutation burden, and squamous histology but not with KRAS or
EGFR mutation status (Figure 5 and Figure 6). This collective data supports the concept that there is an
ongoing antitumor immune response in the “hot” subset of NSCLC that is suppressed.

While a critical accumulation of tumor-infiltrating leukocytes is likely required for targeted immuno-
therapies to be successful, simple quantification of leukocyte populations does not capture immune cell
phenotypic variation, such as expression of inhibitory receptors and their ligands within the tumor micro-
environment. Many immunotherapy biomarker studies perform PD-L1 IHC scoring for tumor cells only
and do not include PD-L1 scoring for immune cells. Our data show that TCIC* and TC* have similar
leukocyte infiltrates (Figure 3D) and similar expression of PD-1 and other immune checkpoints (Figure
4D). Therefore, patients who score as PD-L1" by many IHC tests may be, immunologically speaking, indis-
tinguishable from PD-L1* patients. Relying solely on tumor cell PD-L1 IHC scoring to predict sensitivity
to PD-1/PD-L1 blockade, therefore, excludes some patients who may respond to anti-PD-1 therapy. It
is these patients with tumor cell and/or immune cell PD-L1* tumors that populate our “hot” cluster and
have the highest levels of CD8* T cells with expression of PD-1 and TIM-3 (Figure 5). Therefore, inclu-
sion of immune cell PD-L1 scoring into PD-L1 IHC diagnostics may enable that test to more accurately

insight.jci.org  doi:10.1172/jci.insight.89014 11
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recapitulate the immunophenotypic features indicative of our “hot” cluster (Figure 5). If the critical factor
underlying the response to checkpoint blockade is presence of leukocytes, however, then hybrid IHC/flow
cytometry—based readouts may improve upon PD-L1 THC as an immune biomarker. Only prospective
studies with immunoprofiling before and after treatment can answer these questions as to what degree leu-
kocyte abundance and phenotype can predict response to anti-PD-1/PD-L1 therapy.

In our study smoking status and mutational genotyping do not predict immunological features of
NSCLC. There are varying reports of associations between mutant EGFR and KRAS and PD-L1 expres-
sion, indicating that genomic data may predict response to single-agent anti-PD-1 (31, 32). However, we
did not observe a correlation between KRAS mutation and immunophenotype or PD-L1 THC. EGFR
tumors were all negative for PD-L1 expression on tumor cells but did not cluster preferentially as immu-
nologically “hot” or “cold” (Figure 5SH). Lack of PD-L1 expression by mutant EGFR lung tumors may
explain their recently reported low response rates to PD-1 pathway blockade (33). Our data demonstrate
that mutation status is not illustrative of immunophenotype and corroborate previous studies in which nei-
ther EGFR or KRAS mutations predicted successful response to anti-PD-1 therapy (34, 35).

Current and former smokers have higher PD-L1 expression compared with never smokers, and this
is thought to explain the higher objective response rate of smokers to anti-PD-L1 therapy (31). Based on
previous studies, we expected additional immunological markers to correlate with smoking status. The
lack of correlation we found between smoking status and PD-L1 THC may be due to low sample number

doi:10.1172/jci.insight.89014 12
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(9 TC*PD-L1%), but leukocyte abundance and phenotype also did not differ between smokers and never
smokers (Figure 3A and Figure 4A). We then broke down smoking status by the more quantitative metric
of pack years and found that smoking status weakly correlates with immunophenotype (Figure 5I). It is
well established that smokers have higher response rates to anti-PD-1/PD-L1 therapy. The recent study by
Rizvi et al. confirmed that mutation burden as well as presence of mutations in DNA repair genes were cor-
related with anti—-PD-1 response (36). One limitation of our study is that we did not perform whole-exome
sequencing on our cohort to assess a molecular smoking signature that has been shown to correlate with
immunotherapy efficiency better than self-reported smoking status. However, the number of mutations
identified using our smaller focused sequencing panel correlated with our immunophenotypic clusters, sug-
gesting the possible use of simple flow-profiling platforms as part of patient stratification for the treatment.

B cells may be protumorigenic or antitumorigenic or even phenotypically heterogeneous within and
across tumors (37). In light of the ongoing phase Ib/II clinical trial (NCT02403271) using combination
PD-L1 inhibitor (durvalumab) and BTK inhibitor (ibrutinib) for treatment of NSCLC, and the ambiguity
as to the role of B cells in NSCLC, we thought a deeper analysis of tumor-associated B cells was warranted.
B cells as components of TLSs are good prognostic factors in cancer (27), whereas IL-10—producing Bregs
are regarded as negative (28). We found TLSs in 20 of 22 NSCLCs assayed, but there was no association
between “hot” or “cold clusters (Supplemental Figure 7E). We consistently identified a small proportion of
IL-10—producing B cells in our NSCLC samples that were absent in normal lung tissue (Figure 8A). Bregs
are identified by expression of the surface markers CD19*CD24%CD38%CD5*CD1d", CD24"CD27+,
and recently Bregs isolated from hepatocellular carcinoma have been shown to be PD-1MCD5"CD24/*C-
D27%/*CD38%m (28, 38). We sorted B cells from one tumor and performed RNAseq on single cells. We used
the expression of IL-10 as our marker for Bregs, as it is the only consistently expressed gene shared across
Breg nomenclatures. IL-10-producing B cells comprised 11% of tumor-sorted B cells (9 of 83) and were
absent from normal lung-sorted B cells (0 of 47). Interestingly, IL-10—producing B cells were not enriched
in canonical Breg surface antigens CD24, CD27, or CD38, which may highlight the limitation of profiling
of Bregs by flow cytometry and explain the reported diversity of phenotypic markers. This exploratory
data set provides a proof of principle for the single-cell expression profiling of tumor-infiltrating B cells
and a glimpse at their transcriptional profile. Unlike FOXP3* Tregs, it has been reported that Bregs do
not irreversibly lineage commit at an early developmental point but can adopt a regulatory phenotype at
various stages along the B cell developmental continuum (28). The IL-10—-producing B cells we analyzed
by single-cell RNAseq resemble a plasma cell phenotype, with hallmarks of MYC activation and oxidative
metabolism (Figure 8, B and C). More analysis is needed to fully deconstruct Breg transcriptional profiles.

It is likely that the presence of leukocytes in the tumor at time of immunotherapy and the expression
of inhibitory receptors by tumor-resident T cells — immunologically “hot” versus “cold” — are the critical
factors predicting response to anti—-PD-1/PD-L1 therapeutics (8). Traditional stratifying clinical criteria,
such as oncogenic driver, do not predict immunophenotype and, therefore, may not inform the use of
checkpoint blockade. NSCLCs clearly fall into immunologically “hot” or “cold” clusters, and only inte-
gration of flow-based, immunohistochemical, and transcriptomic immunophenotyping can differentiate
between the two. It is tantalizing to hypothesize that as few as 3 markers (Figure 7) can recapitulate more
comprehensive immunophenotyping to determine whether a NSCLC is “hot” or “cold” and, hence, more
amenable to immunomodulatory therapy. This study defines the broad spectrum of immunophenotypes
that constitute NSCLC and sets the stage for future prospective studies to identify immune cell-based bio-
marker signatures predictive of response and resistance to immunotherapies.

Methods

Tumor preparation, flow cytometry, and antibodies. Fresh tissue was minced in a 10-cm dish then resuspended
in dissociation buffer consisting of RPMI (Life Technologies) +10% FBS (HyClone), 100 U/ml collage-
nase type IV (Life Technologies), and 50 pg/ml DNase I (Roche) at a ratio of 5 ml of dissociation buffer to
500 mg of sample. Suspension was incubated at 37°C for 45 minutes and then further dissociated by being
passed through a syringe. Red blood cells were removed from samples using red blood cell lysis buffer (Bio-
Legend). Samples were pelleted and then resuspended in fresh RPMI +10% FBS and strained over a 70-um
filter. Cells were incubated with the Live/Dead Fixable Yellow Dead Cell Stain Kit (Life Technologies) for
8 minutes in the dark at room temperature or Live/Dead Fixable Zombie NIR (Biolegend) for 5 minutes in
the dark at room temperature in FACS buffer (PBS +2% FBS) at a ratio of 250 pl L/D 1X dilution to 100
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mg of original sample weight. Surface marker and intracellular staining were performed according to the
manufacturer’s protocols (eBioscience). FcR was blocked prior to surface antibody staining using Human
FcR Blocking Reagent (Miltenyi). Cells were fixed in 1% PBS +2% FBS and washed prior to analysis on
a BD FACSCanto II HTS cell analyzer or BD LSRFortessa with FACSDiva software (BD Biosciences).
Data were analyzed using FlowJo software version 10.0.8. Cell viability was determined by negative live/
dead staining. Antibodies were specific for the following human markers: CD3 (HIT3a; UCHT1), CD8
(RPA-T8), CD14 (M5E2; MphiP9), CD24 (ML5), CD45 (HI30), CD56 (B159), CCR7 (150503), EpCAM
(EBA-1), HLA-DR (G46-6), PD-1 (EH12.1), and IgG1 isotype control (MOPC-21) from BD Bioscienc-
es; CD3 (UCHT1), CD4 (RPA-T4), CD14 (M5E2), CD15 (W6D3), CD16 (3G8), CD19 (HIB19), CD20
(2H7), CD21 (Bu32), CD25 (BC96), CD27 (M-T271), CD33 (WM53), CD38 (HIT2), CD40L (26-33),
CD45 (HI30), CD45RA (HI100), CD45RO (UCHL1), CD56 (HCD56; 5.1H11), CD66b (G10F5), CD69
(FN50), CD83 (HB15e), CD123 (6H6), CD160 (BY55), CD163 (GHI/61), CTLA-4 (L3D10), CXCR5
(J252D4), EpCAM (9C4), HMGBI1 (3E8), IgM (MHM-88), Ki-67 (Ki-67), PD-1 (EH12.2H7), PD-L1
(29E.2A3), PD-L2 (24F.10C12), TIM-3 (F38-2E2), NKG2D (1D11), NKp46 (9E2), IgG2a isotype con-
trol (MOPC-173), IgG2b isotype control (MPC-11), and IgG1 isotype control (MOPC-21) from BioLeg-
end; Pan-cytokeritin (C11) and PD-L1 (E1L3N) from Cell Signaling Technologies; CD45 (2D1), FOXP3
(236A/E7), and IL-10 (236A/E7) from Affymetrix/eBioscience; and LAG3 (polyclonal) and isotype con-
trol (polyclonal) from R&D Systems.

Collection of surgical samples. NSCLC tumors, matched normal lung, and, where available, peripheral
blood, were obtained from 51 patients. Tumor samples were collected into sterile medium (DMEM +FBS)
and stored on ice before dissociation, which was begun 30-45 minutes after resection. The histological
subtype of tumors was confirmed by a board-certified pathologist with expertise in thoracic malignancies
(LMS). Patients from all disease stages were selected in an unbiased manner over a 2-year period. The pro-
spective nature of this study assumed heterogeneity in immune profiles.

Tumor genotyping via digital droplet PCR. Cryosections from tumor tissue samples underwent DNA
extraction using the Qiagen DNeasy Blood & Tissue Kit according to the manufacturer’s protocol. DNA
was then eluted in 102 ul of AVE buffer and stored at —80°C until genotyping was performed. Digital
droplet PCR-based (ddPCR-based) genotyping was performed for EGFR mutations, specifically exon
19 del and L858R, and KRAS mutations, specifically condon 12 mutation and G13D. The develop-
ment of this assay has been previously described (39). Briefly, diluted tumor DNA was emulsified into
approximately 20,000 droplets and mixed with appropriate primers/probes and PCR mastermix; then
PCR was carried out to endpoint. Droplets were then read in a flow cytometer (QX200 Droplet Reader,
Bio-Rad), and fluorescence signal was quantified in order to determine the number of copies of mutant
and wild-type alleles per pl of the reaction. Extracted DNA was quantified by UV-Vis spectrophotom-
eters and diluted to 2,000 genetic equivalents/ul (Thermo Scientific). Genotyping of tumor DNA was
then performed using ddPCR reagents (Bio-Rad) and primer/probe mixes, which were custom-made by
Life Technologies. For EGFR L858R assay, primer sequences were as follows: forward, 5-GCAGCAT-
GTCAAGATCACAGATT-3", reverse, 5-CCTCCTTCTGCATGGTATTCTTTCT-3"; probe sequenc-
es were as follows: 5-VIC-AGTTTGGCCAGCCCAA-MGB-NFQ-3', 5-FAM-AGTTTGGCCCG-
CCCAA-MGB-NFQ-3". For EGFR dell9 ddPCR assay, primer sequences were as follows: forward,
5-GTGAGAAAGTTAAAATTCCCGTC-3', reverse, 5-CACACAGCAAAGCAGAAAC-3'; probe
sequences were as follows: 5-FAM-AGGAATTAAGAGAAGCAACATC-MGB-3' (ex19 deletion hotspot
probe), 5'-VIC-ATCGAGGATTTCCTTGTTG-MGB-3’ (ex19 reference probe). For KRAS G12A assay,
primer sequences were as follows: forward, 5-GCCTGCTGAAAATGACTGAATATAAACT-3', reverse,
5-GCTGTATCGTCAAGGCACTCTT-3'; probe sequences were as follows: 5-VIC-TTGGAGCTGGT-
GGCGTA-MGB-NFQ-3', 5-FAM-TTGGAGCTGCTGGCGTA-MGB-NFQ-3'. For KRAS G12C assay,
primer sequences were as follows: forward, 5-GCCTGCTGAAAATGACTGAATATAAACT-3', reverse,
5-GCTGTATCGTCAAGGCACTCTT-3'; probe sequences were as follows: 5-VIC-TTGGAGCTGGT-
GGCGTA-MGB-NFQ-3', 5-FAM-TTGGAGCTTGTGGCGTA-MGB-NFQ-3'. For KRAS G13D assay,
primer sequences were as follows: forward, 5-GCCTGCTGAAAATGACTGAATATAAACT-3, reverse,
5-GAATTAGCTGTATCGTCAAGGCACT-3'; probe sequences were as follows: 5'-VIC-CTTGCCTACG-
CCACCAG-MGB-NFQ-3', 5" FAM-CTTGCCTACGTCACCAG-MGB-NFQ-3'. For KRAS G12D assay,
primer sequences were as follows: forward, 5-GCCTGCTGAAAATGACTGAATATAAACT-3', reverse,
5-GCTGTATCGTCAAGGCACTCTT-3'; probe sequences were as follows: 5-VIC-TTGGAGCTGGT-
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GGCGTA-MGB-NFQ-3, 5-FAM-TTGGAGCTGATGGCGTA-MGB-NFQ-3'. For KRAS G12V assay,
primer sequences were as follows: forward, 5-GCCTGCTGAAAATGACTGAATATAAACT-3', reverse,
5-GCTGTATCGTCAAGGCACTCTT-3"; probe sequences were as follows: 5-VIC-TTGGAGCTGGT-
GGCGTA-MGB-NFQ-3', 5" FAM-TTGGAGCTGTTGGCGTA-MGB-NFQ-3'. For KRAS G128 assay,
primer sequences were as follows: forward, 5-GCCTGCTGAAAATGACTGAATATAAACT-3', reverse,
5-GCTGTATCGTCAAGGCACTCTT-3"; probe sequences were as follows: 5'-VIC- TTGGAGCTGGT-
GGCGTA-MGB-NFQ-3', 5-FAM-TAGTTGGAGCTAGTGGCGTA-MGB-NFQ-3". Analysis of the
ddPCR data was performed with QuantaSoft analysis software (Bio-Rad) that accompanied the droplet
reader. Positive and negative clusters were set using the FAM and VIC thresholds based on the amplitude
of positive controls that were ran concomitantly with each assay.

mRNA analysis. Total RNA was extracted using the Qiagen RNeasy kit or Arcturus PicoPure RNA Iso-
lation Kit. RNA quality and concentration was assessed using an Agilent Bioanalyzer 2100. For each sam-
ple, mRNA transcript abundance for 770 genes of interest was quantified using the Nanostring nCounter
Human PanCancer Immune Profiling Panel according to the manufacturer’s protocol from 100 ng of total
RNA and analyzed using nSolver 2 software and the HumanPanCancerImmunology_1.0.36 analysis mod-
ule. Differential expression of genes in response to “hot” versus “cold” sample breakdown was performed
in the Advanced Analysis module of nSolver. For each gene, a single linear regression was fit using all
selected covariates to predict expression. Output is shown with nonadjusted P value as well as Benjami-
ni-Hochberg FDR. Univariate box/violin plots were generated via Gene Descriptive Analyses module.
Nanostring array data have been deposited in the NCBI GEO public data repository (reference series acces-
sion GSE84799).

IHC. Four-micron-thick sections of formalin-fixed, paraffin-embedded tissue were baked at 37°C over-
night, deparaffinized, and rehydrated. Peroxidase activity was blocked with 1.5% hydrogen peroxide in
methanol for 10 minutes. Antigen retrieval was performed in a Decloaking Chamber NxGen pressure cook-
er (Biocare Medical) at 120°C in Dako Target Retrieval Solution (Dako). For PD-L1/Pu.1 double staining,
sections were first incubated with anti-PU.1 (BD Bioscience) at 1:100 for 40 minutes at room temperature.
Anti-mouse Dako EnVision+ System-HRP (DAB) was used for the detection. Following the wash, sections
were incubated with anti—-PD-L1 (CST) at 1:200 for 40 minutes at room temperature. PowerVision Poly-AP
Anti-Rabbit IgG (Leica)with Permanent Red was used for the detection. For B cell-specific activator pro-
tein (BSAP or PAX5)/CD3 double THC staining, sections were first incubated with anti-PAX5 (Abcam) at
1:30 for 40 minutes at room temperature. Dako EnVision+ anti-Rabbit (DAB) was used for the detection.
Sequentially sections were incubated with anti-CD3 (Dako) at 1:300 for 40 minutes at room temperature.
Leica’s PowerVision Poly-AP Anti-Rabbit IgG with Permanent Red was used for the detection. All sections
were counterstained with Mayer’s Hematoxylin.

PD-L1 expression in tumor cells was considered positive if 21% of tumor cells had membranous stain-
ing of any intensity. Pu.1 is a transcription factor of B lymphocytes and cell myeloid lineages, among which
it is overexpressed in monocytes, histiocytes, and dendritic cells. Pu.1 expression is restricted to the nucleus
and was examined simultaneously to better assess PD-L1 staining in immune cells. Alveolar macrophages
have been shown to express multiple markers nonspecifically and were excluded from analysis.

BSAP is a transcription factor expressed in the nuclei of pro, pre, and mature B cells. B cell quantifica-
tion was performed using the Positive Pixel Count v9 algorithm by Aperio (Leica). Intensity of weak pixels
(Iwp[High] parameter) was changed from 220 to 180 to adjust to hematoxylin staining on nuclei as a proxy
for total cell count. DAB staining for BSAP was counted as the number of strong positive pixels. Permanent
red staining for CD3 was detected as positive pixels; however, some areas of darker hematoxylin as well as
nonspecific staining in alveolar macrophages were also detected as positive pixels, preventing correct quan-
tification of CD3 staining. The BSAP score was generated by dividing the number of strong positive pixels
by the area score (number of negative + positive + strong positive pixels multiplied by 10e8).

TLSs are lymph node-like arrangements of several immune cell types (primarily B and T lymphocytes)
recently shown to play an important role in tumor microenvironment (40). TLS were counted manually on
Aperio-scanned slides with the minimal zoom of x0.5. At this resolution, 130- to 200-um clusters of B and
T cells were visible and counted as small, 200~300 um clusters of B and T cells were counted as medium,
and >300 pum clusters of B and T cells were counted as large TLSs (Supplemental Figure 7). TLS score is
reported as the number of small TLSs plus the number of medium TLSs multiplied by 2, plus the number
of large TLSs multiplied by 3, and divided by area score from B cell quantification. All the slides were eval-
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uated and scored blinded to clinical data.

Single-cell RNAseq. Live CD45*CD19* cells were sorted directly into 2 pl of Qiagen TCL buffer in
Eppendorf TWIN.TEC skirted 96-well plates. The SmartSeq2 libraries were prepared according to the
SmartSeq2 protocol (29, 41) with some modifications (42). Briefly, total RNA was purified using RNA-
SPRI beads. Poly(A)+ mRNA was converted to cDNA, which was then amplified. cDNA was subjected
to transposon-based fragmentation that used dual indexing to barcode each fragment of each converted
transcript with a combination of barcodes specific to each sample. In the case of single-cell sequencing,
each cell was given its own combination of barcodes. Barcoded cDNA fragments were then pooled prior to
sequencing. Paired-end (PE) sequencing was carried out twice with 25-bp reads, with an additional 8 cycles
for each index. The Smart-Seq2 data was processed at the Broad Technology Labs according to established
computational pipeline. Data were separated by barcode and aligned using Tophat version 2.0.10 (43) with
default settings. PE 25-bp reads were mapped to the UCSC human genome (hgl9) by Bowtie2/Tophat
(44) using the Broad pipeline. Only cells that had a minimum of 100,000 PE reads, with at least 20%
aligning to the genome, were retained for further analysis. FeatureCounts (45) was used to count features
based on the Gencode v19 (http://www.gencodegenes.org/) transcriptome annotation. Features that were
not detected in more than 10 cells were removed. High-quality single cells were further selected based on
feature complexity, read distribution, and number of genes detected. In total 47 normal and 83 tumor cells
were retained in this process. DESeq2 (46) was used to detect differentially expressed genes between groups
based on raw counts. Counts were normalized according to their library size and displayed as log,(normal-
ized counts + 1). IL-10 high and low clusters were classified based on Kmeans clustering on log,(normal-
ized counts) excluding cells with no detectable IL-10 expression. To identify positive or negative enriched
biological or molecular signatures between the IL-10 high and low population we applied the GSEA tool
(47) on the DESeq2-generated list of differentially expressed genes. This list was preranked based on the
multiplication value of log, fold change and —log, (adjusted P value). To estimate clonality of B cell Ig-pro-
ducing cells, we summed all reads of genes that are located in k and A loci, respectively, as well as all reads
of IGK and IGL genes annotated by Gencode v19, and calculated the /A ratio (Igk/IGgh). Cells with a
ratio between 1:3 and 3:1 were considered to express both loci. Cells with ratios >3:1 or <1:3 were defined
K- or A-producing cells, respectively. Single-cell RNAseq NGS data have been deposited in the NCBI GEO
public data repository (reference series accession GSE84799).

Statistics. The unsupervised nonlinear dimension reduction method t-SNE (19, 20) was applied to inves-
tigate in reduced dimension space how 51 tumors are located in relation to each other based on multipara-
metric flow cytometry data. t-SNE denotes a tree-based algorithm, which minimizes the divergence of
neighborhood closeness moving from high dimensions to low dimensions. For the embedding, 15 param-
eters were used, which are listed in Supplemental Figure 9. P values of less than 0.05 were considered
significant. Unpaired, 2-tailed Student’s ¢ test was used to assess significance. More in-depth descriptions
are given in individual figure legends.

Study approval. The present studies were reviewed and approved by the Dana-Farber/Harvard Cancer
Center (DF/HCC) institutional review board (Boston, Massachusetts, USA) under protocol 98-063 and
all were performed in accordance with relevant guidelines and regulations. Written informed consent was
obtained from all subjects prior to participation in this study. Informed consent by patients to DF/HCC
protocol 02-180 enabled collection of clinical and demographic data, genomic characterization by Onco-
Panel, and analysis of tissue by IHC.
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