Supplementary Information

Synergy of radiotherapy and PD-1 blockade in *Kras*-mutant lung cancer

Grit S. Herter-Sprie, Shohei Koyama, Houari Korideck, Josephine Hai, Jiehui Deng, Yvonne Y. Li, Kevin A. Buczkowski, Aaron K. Grant, Soumya Ullas, Kevin Rhee, Jillian D. Cavanaugh, Neermala Poudel Neupane, Camilla L. Christensen, Jan M. Herter, G. Mike Makrigiorgos, F. Stephen Hodi, Gordon J. Freeman, Glenn Dranoff, Peter S. Hammerman, Alec C. Kimmelman, and Kwok-Kin Wong

Supplementary Figure 1 – 5

Supplementary Tables

Supplementary Figure 1

Tumor growth kinetics in response to RT and αPd-1 treatment in Kras-mutant murine NSCLC. (A) Representative MR images of a responsive (left lung) Kras-driven tumor at different time points (baseline, 8, and 14 weeks post treatment initiation). Contralateral tumor growth in the right lung (n=7). (B) Representative MR images of a resistant (left lung) Kras-driven tumor at different time points (baseline, 8, and 20 weeks post treatment initiation) (n=3). H (heart) circled in red. L (liver) circled in green. T (tumor) circled with white/blue dotted line.

Supplementary Figure 2

Treatment of RT-refractory *K* tumors with α Pd-1 induces marker of T cell inhibition. (**A**) Expression of selected T cell-associated genes in RT-relapsed and RT-relapsed α Pd-1-treated tumors. (**B**) Expression of selected macrophage-associated genes in RT-relapsed and RT-relapsed α Pd-1-treated tumors. Representative data are shown from mouse nCounter PanCancer Immune Profiling Panel conducted with RNA from 4 RT-retreated and 4 RT-refractory α Pd-1-treated mice (**A**, and **B**). Data are represented as mean ± SEM. Btla, B- and T-lymphocyte attenuator; Eomes, Eomesodermin; II1b, Interleukin 1 beta; Ccl5, Chemokine (C-C motif) ligand 5; Ifng, Interferon gamma; Gzmb, granzyme B; Lrp1, Low density lipoprotein receptor-related protein 1; Irf4, Interferon regulatory factor 4; Mrc1, Mannose receptor, C Type 1; Socs1, Suppressor of cytokine signaling 1; CD36, CD36 Molecule/Thrombospondin receptor; Arg1, Arginase 1; Tgfb1, transforming growth factor beta-1; II13, Interleukin 13; II10, Interleukin 10; II4, Interleukin 4; Ifnb1, Interferon beta 1; Ifna4, Interferon alpha 4; Ifna2, Interferon alpha 2; Ifna1, Interferon alpha 1; Vegfc, Vascular endothelial growth factor C; Vegfa, Vascular endothelial growth factor A; II6, Interleukin 6; Tnf, Tumor necrosis factor; II23a, Interleukin 23 alpha; II12b, Interleukin 12 beta; II12a, Interleukin 12 alpha; Nos2, Nitric oxide synthase 2.

Supplementary Figure 3

Tumor growth kinetics in response to RT in *Kras*-mutant murine NSCLC. Tumor volume kinetics of RT-treated tumors. Each line represents one mouse (n=5). Data of this cohort was previously published (Herter-Sprie et al., 2014).

Supplementary Figure 4

Tumor growth kinetics in response to RT and aPD-1 treatment in Kras/Lkb1-mutant murine NSCLC and differences in tumor-associated immune cell populations compared to Kras-mutant murine NSCLC. (A) CD45+/EpCAM+ ratio calculated from Figure 5B (3 unirradiated, 3 RT-treated, 3 αPD-1-treated, and 4 RT+αPD-1-treated mice). (B) MR images of a progressive Kras/Lkb1 tumor at different time points (baseline, 4, and 6 weeks post treatment initiation) (n=2). H (heart) circled in red. T (tumor) circled with white/blue dotted line. (C) Representative flow cytometry data (live/single/total CD45⁺ cells). Total numbers of tumor-infiltrating myeloid cells of unirradiated Kras and Kras/Lkb1 tumors (taken from Figure 2B and Figure 5B). (D) Expression of inhibitory T cell markers on CD8+ and CD4+ T cells of unirradiated Kras and Kras/Lkb1 tumors (taken from Figure 2E and Figure 5D). Representative data are shown conducted with 5 unirradiated Kras, and 3 unirradiated Kras/Lkb1 mice (C and D). Data are represented as mean ± SEM. P values were calculated using two-tailed Student's t-test. "P<0.001, "P<0.01, P<0.05.

Ctla4

adapted from Koyama et al., Cancer Res., 2016

Supplementary Table 1

Antigen	Clone	Source	Antigen	Clone	Source
CD45	30-F11	BioLegend	Siglec F	E50-2440	BD Biosciences
CD3ɛ	145-2C11	BioLegend	PD-1	29F.1A12	BioLegend
CD4	RM4-5	BioLegend	TIM-3	RMT3-23	BioLegend
CD8a	53-6.7	BioLegend	LAG-3	C9B7W	BioLegend
CD19	6D5	BioLegend	CD103	2E7	BioLegend
DX5	DX5	BioLegend	PD-L1	10F.9G2	BioLegend
NKp46	29A1.4	BioLegend	EpCAM	G8.8	BioLegend
CD11c	N418	BioLegend	CD16/32	2.4G2	BioLegend
CD11b	M1/70	BioLegend			
Ly-6G	1A8	BioLegend	FOXP3	FJK-16s	eBioscience
Ly-6C	HK1.4	BioLegend	CTLA-4	UC10-4B9	eBioscience

Supplementary Table 1

List of murine antibodies used for flow cytometry analysis.