SUPPLEMENTARY MATERIAL

Multiplexed immunofluorescence delineates proteomic cancer cell states associated with metabolism

Authors: Anup Sood⁷*, Alexandra M. Miller²*, Edi Brogi³*, Yunxia Sui⁷, Joshua Armenia^{1,} Elizabeth McDonough⁷, Alberto Santamaria-Pang⁷, Sean Carlin⁴, Aleksandra Stamper¹, Carl Campos¹, Zhengyu Pang⁷, Qing Li⁷, Elisa Port^{5,†}, Tom Graeber⁸, Nikolaus Schultz^{1,6}, Fiona Ginty^{7,#}, Steven M. Larson^{4,#}, and Ingo K. Mellinghoff ^{1,2,9,#}

Affiliations: ¹ Human Oncology and Pathogenesis Program, and the Departments of ²Neurology, ³Pathology, ⁴Radiology, ⁵Surgery, and ⁶Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY10065, USA; ⁷Diagnostic Imaging and Biomedical Technologies, General Electric Global Research Center, Niskayuna, NY 12309; ⁸Department of Molecular and Medical Pharmacology, University of California at Los Angeles, CA 90095; ⁹Department of Pharmacology, Weill-Cornell Medical School, New York, NY10021, USA

* Equal contribution. # To whom correspondence should be addressed: <u>ginty@research.ge.com</u>, <u>LarsonS@mskcc.org</u>, and <u>mellingi@mskcc.org</u>; † Present Addresses: Department of Surgery, Mount Sinai Hospital, New York, NY10029

Index Supplementary Figures 1-9_pages 2-11 Supplementary Table 1_page 12 Supplementary Table 2_page 13 Supplementary Table 3_page 14-16

Supplementary Figure 1. Placement of 10- 40 Fields-of-View (FOVs) per tumor specimen. Shown is a virtual hematoxylin/eosin (H&E) image of one human breast cancer specimen (#068). Each green box indicates one FOV.

Supplementary Figure 2. Pathological Annotation of all FOVs. The <u>left</u> part of the figure shows an overview of the data presented in Supplementary Table 3 at higher resolution. Each column represents one tumor specimen, each row represents one FOV. For each tumor sample, exemplified by tumor #638 in the <u>right</u> part of the figure, 10-40 fields-of-view (FOVs) were placed, reviewed by a breast cancer pathologist (E.B.), and classified into one of four categories: IDC (red), benign tissue (green), ductal carcinoma-in-situ (DCIS, yellow), or mixed histology (blue). The <u>right</u> part of the figure shows the distribution of all FOVs amongst the four histopathological categories (Sample #638). In tumor #638, FOVs #0/1/2/3/4 contained mostly non-malignant epithelial cells (benign breast tissue), whereas FOVs #7, 8, 12, 14-18, and 29 consisted mostly of invasive ductal carcinoma cells. **Note**, the majority of FOVs in our dataset represented IDC (red cells in left part of figure). FOVs representing benign breast tissue (green), DCIS (yellow), or areas of mixed histology (blue) were excluded from the analysis of protein expression clusters. The numbers listed in each cell represent the number of epithelial cells in each FOV.

Supplementary Figure 3. Progesterone Expression in three representative breast cancers (#633, #658, #663). Pancytokeratin=red. PR=yellow. Sample #658 was one of the samples that was discordant between the CLIA result and the IF results. Magnification=20x.

Supplementary Figure 4. Relationship between ER status and heterogeneity in protein expression. There was a trend toward higher intratumoral heterogeneity in ER-positive tumors, but this relationship was not significant when heterogeneity was defined as **A.**) the fraction of FOVs containing three of more different protein expression clusters (p=0.06, t-test) or **B.**) the number of clusters expressed in > 1 % of neoplastic cells (p=0.25, t-test).

Supplementary Figure 5. Spatial Distribution of Protein Expression Clusters. Shown are low resolution images of each breast cancer specimen. Colored pie charts show the distribution of protein expression clusters within each FOV (cluster color identical to Figure 4 in main MS). Green boxes without pie charts represent FOVs that were not included in our quantitative analysis of protein expression because they included areas of mixed histology, ductal carcinoma-in-situ, or normal epithelial cells.

Supplementary Figure 6: Regional Loss of PTEN expression in tumor # 653. Left Panel: Low resolution view of the entire section of tumor #653. Colored pie charts show the distribution of protein expression clusters within each FOV. Note, that the upper portion of the tumor section 653 is characterized predominantly by cluster 6 cells. There is a transitional zone that is heterogeneous in which there is a mixture of cluster 6 and cluster 8 positive cells, then in the lower portion of the tumor, the cells mostly belong to cluster 8. <u>Right Panel:</u> Immunofluorescence staining for the indicated FOVs. PTEN (red) is strongly expressed in the upper region of the tumor (both stroma and tumor cells). In the lower region, PTEN expression is only noted in panCK (yellow)-negative stromal cells, but not panCK-positive tumor cells. Additionally, note increase staining for p-eIFAE (green) in PTEN negative tumor cells. DAPI=blue. Magnification=20x; Zoom=3x.

Hormone Positive Patients

Supplementary Figure 7: Relationship between intratumoral heterogeneity and FDGuptake in ER positive tumors. A linear regression model was used to compare intratumoral heterogenetity with SUVmax. Heterogeneity was defined as the fraction of FOVs containing three or more distinct protein expression clusters. The FOVs were binned into "homogenous" vs. "heterogeneous" using a cut-off of >=3 clusters (the linear slope is -2.11 with p=0.04 based on t-test).

Univariate Analysis									
Predictor of FDG SUV max	P-value	Slope							
Negatively correlated									
ER (mean)	4.03E-06	-2.26							
PR (mean)	2.37E-03	-1.29							
PTEN (mean)	4.17E-02	-4.06							
Positively Correlated									
Ki67 (mean)	6.57E-03	4.89							
N-myc downstream regulated 1 (std. dev.)	1.62E-03	6.71							
Glut1 (Mean)	1.42E-02	1.81							
Multivariate Analysis									
Predictor of FDG SUV max	Regression co-efficient	p-Value							
(Intercept)	12.67	1.12E -04							
ER (mean)	-1.75	6.38E-05							
PR (mean)	-0.36	2.26E-01							
N-myc downstream regulated 1 (std. dev.)	3.86	9.59E-03							

Supplementary Figure 8. Relationship between individual protein markers and tumor uptake of FDG. A.) Univariate Analysis. Slope represents predicted change in SUVmax per log2 unit change in corresponding biomarker metric. B.) Multivariate analysis.

Supplementary Figure 9: Effect of sequential dye inactivation cycles on different protein antigens. Top tier: phospho-4EBP1 staining, bottom tier: S6 Ribosomal Protein. Please see Text for details. Magnification=20x; Zoom=2x.

11

Supplementary Table 1:

Biomarker	Vendor	Cat#	Clone	
AR	Dako	M3562	AR441	
4EBP1 (pT37/pT46)	Cell Signaling	2855B 236B4		
Cadherin-pan	Neomarkers	RB-9036 polyclonal		
CD31	Cell Signaling	3528	89C2	
сМҮС	Epitomics	1472	Y69	
Cytokeratin_pan (PCK26)*	Sigma	C1801	PCK-26	
Cytokeratin_pan (AE1)*	eBioscience	14-9001	AE1	
EGFR (pY1068)	Epitomics	1727-1	EP774Y	
EIF4E (pS209)	Epitomics	2227-x	EP2151Y	
ER	Leica	PA0151 6F11		
Erk1/2 (pT202/pY204)	Cell Signaling	4376BF	20G11	
Glut-1	Millipore	07-1401 polyclon:		
Her2	Cell Signaling	4290	D8F12	
Histone H3 (pS10)	Millipore	09-797	polyclonal	
HK2	Cell Signaling	2867	C64G5	
IGF1R	Lifespan	LS-C82136	3C8B1	
Ki67	Thermo Fisher	RB 1510 PABX	polyclonal	
LDH-A	Cell Signaling	3582BF	C4B5	
NaKATPase	Epitomics	2047-x	EP1845Y	
p53	Dako	M7001 DO-7		
PDK1 (pS241)	Abcam Epitomics	ab109460 EPR336(2)		
PR	Dako	M3568 PgR1294		
PTEN	Cell Signaling	9188 D4.3		
S6	Cell Signaling	2217 5G10		
S6 (pS235/pS236)	Cell Signaling	4858B D57.2.2E		
Transferrin Receptor I	Invitrogen	13-6800	EPR4013	
NDRG1	AGI	S0731	H-90	
CA9	Thermo Fisher	PA1-16592 D78A4		

Supplementary Table 1: List of primary antibodies. * A cocktail of two in a 2:1 (PCK26:AE1) ratio was used to stain keratins for delineating epithelial region.

Supplementary Table 2:

Patient#	Histology	Age	Sex	Tumor Size (cm)	Histologic Grade	Nuclear grade	Lymph Node Involve ment
593	IDC	64	F	2.0	111/111	111/111	YES
613	IDC	61	F	2.5	111/111	111/111	YES
618	IDC	57	F	4.0	111/111	111/111	YES
628	IDC	62	F	2.5	11/111	11/111	YES
633	IDC	69	F	4.2	111/111	111/111	YES
638	IDC	28	F	1.4	111/111	111/111	YES
643	IDC	44	F	1.3, 1.2	N/A	N/A	YES
649	IDC	29	F	2.3	11/111	111/111	YES
653	IDC	48	F	8.5	111/111	111/111	YES
658	IDC	28	F	3.2	111/111	111/111	NO
663	IDC	34	F	2.1	111/111	111/111	YES
673	IDC	46	F	3.5	111/111	111/111	YES
683	IDC	40	F	9.5	111/111	111/111	YES
050	IDC	31	F	N.D.	111/111	11/111	YES
057	IDC	38	F	2.3	111/111	11/111	NO
062	IDC	46	F	4	111/111	111/111	NO
116	IDC	34	F	1.7	111/111	11/111	YES
068	IDC	51	F	3.0	111/111	111/111	YES
072	IDC	71	F	1.2	111/111	11/111	YES
077	IDC	41	F	2.5	111/111	111/111	YES
083	IDC	46	F	3.5	111/111	111/111	YES
086	IDC	42	F	4.5	11/111	11/111	YES
112	IDC	39	F	8.0	111/111	111/111	YES
100	IDC	33	F	4.5	111/111	11/111	YES
095	IDC	60	F	1.8	111/111	111/111	YES
090	IDC	64	F	5.0	111/111	111/111	YES

Supplementary Table 2. Breast cancer patient clinico-pathologic characteristics (n=26). IDC, invasive ductal carcinoma; N.D. = not able to be determined; N.A. = not available. Tumor #643 had two foci.