Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Citations to this article

Aldehyde dehydrogenase inhibition blocks mucosal fibrosis in human and mouse ocular scarring
Sarah D. Ahadome, … , Julie T. Daniels, John K. Dart
Sarah D. Ahadome, … , Julie T. Daniels, John K. Dart
Published August 4, 2016
Citation Information: JCI Insight. 2016;1(12):e87001. https://doi.org/10.1172/jci.insight.87001.
View: Text | PDF
Research Article Inflammation Ophthalmology

Aldehyde dehydrogenase inhibition blocks mucosal fibrosis in human and mouse ocular scarring

  • Text
  • PDF
Abstract

Mucous membrane pemphigoid (MMP) is a systemic mucosal scarring disease, commonly causing blindness, for which there is no antifibrotic therapy. Aldehyde dehydrogenase family 1 (ALDH1) is upregulated in both ocular MMP (OMMP) conjunctiva and cultured fibroblasts. Application of the ALDH metabolite, retinoic acid (RA), to normal human conjunctival fibroblasts in vitro induced a diseased phenotype. Conversely, application of ALDH inhibitors, including disulfiram, to OMMP fibroblasts in vitro restored their functionality to that of normal controls. ALDH1 is also upregulated in the mucosa of the mouse model of scarring allergic eye disease (AED), used here as a surrogate for OMMP, in which topical application of disulfiram decreased fibrosis in vivo. These data suggest that progressive scarring in OMMP results from ALDH/RA fibroblast autoregulation, that the ALDH1 subfamily has a central role in immune-mediated ocular mucosal scarring, and that ALDH inhibition with disulfiram is a potential and readily translatable antifibrotic therapy.

Authors

Sarah D. Ahadome, David J. Abraham, Suryanarayana Rayapureddi, Valerie P. Saw, Daniel R. Saban, Virginia L. Calder, Jill T. Norman, Markella Ponticos, Julie T. Daniels, John K. Dart

×

Loading citation information...
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts