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Supplemental Figure 1. Liu et al.

Supplemental Figure 1. Increased PA stiffness in rat pulmonary hypertension models and human 
PAH. (A, C) Sprague-Dawley rats were treated with monocrotaline (MCT) or PBS (n=6 per group) and 
lungs harvested after 4 weeks. (B, D) Sprague-Dawley rats were treated with SU5416 (S) or vehicle (V), 
exposed to hypoxia (H) or normoxia (N) for 3 weeks, and then returned to normoxia for an additional 5 
weeks (n=4 per group). Pulmonary arterioles (PA) <100 μm (A-B) and lung parenchyma (C-D) were 
mechanically characterized via AFM microindentation. Each symbol corresponds to one individual PA 
measurement and individual rats are identified by unique symbol/color pairs in each panel. (E-F) AFM 
microindentation was used to mechanically characterize PAs (E) and lung parenchyma (F) in human lung 
samples from IPAH (n=8; ▲), FPAH (n=3; s), APAH (n=6; ◊), and control subjects (n=7; ●). Each symbol 
corresponds to one individual PA measurement and each subject is represented by a unique symbol/color 
pair in each panel. 
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Supplemental Figure 2. Liu et al.

Supplemental Figure 2. Increased RVSP, RVH, and pulmonary vascular remodeling 
following SU5416 and chronic hypoxia. Male Sprague-Dawley rats were treated with 
sc SU5416 (20 mg/kg) or vehicle, exposed to hypoxia (n=5 for SU5416; n=4 for vehicle) 
or normoxia (n=7 for SU5416; n=4 for vehicle) for 3 weeks, and then returned to normoxia 
for an additional 5 weeks. (A) RVSP, (B) Fulton’s index, and (C) RV weight (RVW, mg) 
normalized for body weight (BW, g). (D) Representative 5 μm hematoxylin and eosin 
(H&E)-stained sections in SU5416 hypoxia-exposed animals and controls. Quantification 
of wall thickness of (E) PAs <100 μm, (F) PAs >100 μm, and (G) vessel occlusion. Data 
represent the mean and SEM. Statistical significance was determined by one-way 
ANOVA followed by Dunn’s post test (*p<0.05; **p<0.01; ***p<0.001). 
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Supplemental Figure 3. Liu et al.

Supplemental Figure 3. Distal PA stiffening occurs early in the MCT and sugen hypoxia models of pulmonary hypertension. 
Male Sprague-Dawley rats were treated with monocrotaline (MCT) or PBS (n=6-8 per time point) and harvested at serial time points 
following MCT. AFM microindentation was used to mechanically characterize (A) PAs <100 μm and (B) PAs >100 μm. Each symbol 
corresponds to one individual PA measurement and individual rats are identified by unique symbol/color pairs in each panel. 
Sprague-Dawley rats were treated with SU5416 (S) or vehicle (V), exposed to hypoxia (H) or normoxia (N) (n=4-8 per time point) for 1, 
2, or 3 weeks. Animals exposed to 3 weeks of hypoxia were returned to normoxia for an additional 2, 5, or 9 weeks. PAs <100 μm (C) 
and PAs >100 μm (D) were mechanically characterized via AFM microindentation. Each symbol corresponds to one individual PA 
measurement and individual rats are identified by unique symbol/color pairs in each panel. 
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Supplemental Figure 4. Liu et al.

Supplemental Figure 4. Early matrix deposition in MCT and sugen hypoxia models. (A-D) Male 
Sprague-Dawley rats were treated with MCT (n=6) or PBS (n=11) and harvested after 1 week. Lungs 
were harvested and qPCR performed for (A) COL1A1, (B) COL3A1, (C) FN1, and (D) LOX and 
normalized to 18S expression. (E-H) Male Sprague-Dawley rats were treated with sc SU5416 and 
exposed to hypoxia (S/H; n=4) or treated with vehicle and kept in normoxia (V/N; n=6) for 1 week. 
Lungs were harvested and qPCR performed for (E) COL1A1, (F) COL3A1, (G) FN1, and (H) LOX and 
normalized to 18S expression. Data represent 25th to 75th percentiles (box), median (line), and 5th and 
95th percentiles (whiskers). Statistical significance was determined by the Mann-Whitney U test. 
*p<0.05; **p<0.01, ***p<0.001.
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Supplemental Figure 5. Liu et al.

Supplemental Figure 5. Stiffness does not alter COX-1 or PGI2 receptor expression in PASMC. 
Human PASMC were cultured on polyacrylamide substrates with shear moduli of 0.4 and 25.6 kPa. 
After 48 h, RNA was isolated, reverse-transcribed to cDNA, and qPCR was performed for PTGS1 (A) 
and PTGIR (B). Results were normalized to GAPDH expression. p=NS by the Mann-Whitney U test. 
Data represent the mean and SEM of three independent experiments.
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Supplemental Figure 6. Liu et al.

Supplemental Figure 6. Early reduction in prostanoid levels in MCT and SU5416/hypoxia models. Lipid mediators were 
extracted from lungs of MCT (n=4-5) and SU5416/hypoxia (n=1) exposed rats at serial time points, and prostanoids assessed 
using LC-MS-MS. Characteristic MS-MS spectra were used for the identification of (A) PGD2, (B) PGE2, and (C) PGF2α. Da, 
dalton. (D) Prostanoid levels are expressed as pg/100 mg of lung tissue. Q1, M-H (parent ion) and Q3, diagnostic ion in the 
MS-MS (daughter ion). The detection limit was ~ 0.1 pg. CNT, control.
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Supplemental Figure 7. Liu et al.

Supplemental Figure 7. Treprostinil prevents PA stiffening in the MCT model. 
Sprague-Dawley rats were treated with MCT or vehicle and after 2 wks, had subcutaneous 
minipumps implanted to deliver intravenous treprostinil (90 ng/kg/min) or saline. PAs <100 μm (A) 
and PAs >100 μm (B) were mechanically characterized via AFM microindentation. Each symbol 
corresponds to one individual PA measurement and individual rats are identified by unique 
symbol/color pairs in each panel.
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Supplemental Figure 8. Liu et al.

Supplemental Figure 8. COX-2 expression alters the stiffness-dependent phenotype in 
PASMC. (A-B) COX-2 deficient and WT mouse PASMC were plated on discrete stiffness 
polyacrylamide gels. (A) After 48 h, cell density was determined and normalized to 4 h. Statistical 
significance was determined by two-way ANOVA (p=0.0172 genotype, p=0.0055 stiffness, 
p=0.5793 interaction). (B) RNA was harvested and qPCR was performed for COL1A1 and 
normalized to GAPDH expression. (C-D) Human PASMC overexpressing COX-2 were plated on 
discrete stiffness polyacrylamide gels and harvested after 48 h for qPCR for COL1A1 (C) and FN1 
(D). Data represent 25th to 75th percentiles (box), median (line), and 5th and 95th percentiles 
(whiskers). Statistical significance was determined by the Mann-Whitney U test for pairwise 
comparisons. 
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! ! !!!! ! ! ! ! ! ! ! Supplemental Table 1. Liu et al.!
 
 
Supplemental Table 1. Demographics and Clinical Characteristics of PAH Patients. 
 

Subject 
# Diagnosis Age Sex Race Ethnicity Associated 

Condition 

WHO 
functional 

class 

mPAP 
(mm Hg) 

PVR 
(Wood 
Units)† 

1 IPAH 29 F White Non-Hispanic –! IV 69 6.29 

2 IPAH 30 F Black Non-Hispanic –! III 41 – 

3 IPAH 32 F White Non-Hispanic –! IV 49 13.83 

4 IPAH 41 F Hispanic Hispanic or 
Latino –! IV 43 5.47 

5 IPAH 41 F White Non-Hispanic –! III 55 9.84‡ 

6 IPAH 56 F White Non-Hispanic –! IV 57 11.41‡ 

7 IPAH 18 M American-
Asian Non-Hispanic –! III 67 – 

8 IPAH 51 M White Non-Hispanic –! IV§ 30 5.92 

9 FPAH 33 F White Non-Hispanic –! IV 48 11.51 

10 FPAH 35 M White Non-Hispanic –! III –! –!

11 FPAH 37 M White Non-Hispanic –! IV 77 14.22‡ 

12 APAH 35 F Hispanic Hispanic or 
Latino 

Drugs and 
toxins IV 68 – 

13 APAH 40 F Black Non-Hispanic SLE* III 36 7.43‡ 

14 APAH 40 F White Non-Hispanic CSTPS** IV –! –!

15 APAH 64 F – Hispanic or 
Latino Scleroderma III 32 5.98‡ 

16 APAH 71 F White Hispanic or 
Latino RA*** III 42 2.48‡ 

17 APAH 35 M White Non-Hispanic CSTPS III –! –!

 
* Systemic Lupus Erythematosus  
** Congenital Systemic-To-Pulmonary Shunt 
*** Rheumatoid Arthritis 
§ NYHA Functional Class 
† Measured using thermodilution method.  
‡ Measured using Fick method. 
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   Supplemental Table 2. Liu et al.	
  
 
 
 Supplemental Table 2. Demographics and Clinical Characteristics of Control Donors.  
 

Subject 
# Age Sex Race Ethnicity Type of lethal injury Reason for no organ 

transplantation 

18 11 M White Non-Hispanic Anoxia Low PaO2 

19 20 M – Hispanic or 
Latino Head Trauma Lung trauma 

20 24 M White Non-Hispanic Intracranial 
hemorrhage 

Inadequate lung 
function 

21 25 M White Non-Hispanic Intracranial 
hemorrhage No recipient 

22 26 M White Non-Hispanic Head Trauma Poor organ quality 

23 30 M White Non-Hispanic Head Trauma Inadequate lung 
function 

24 33 M White Non-Hispanic Anoxia Infiltrates on chest x-
ray 
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         Supplemental Table 3. Liu et al. 
 
  
Supplemental Table 3. Stiffness dependent gene expression in PASMC. 

 

Gene 
Fold change 

(0.4 kPa versus 25.6 kPa) 
ACE -6.82 

ACE2 -2.85 
ALOX5 -1.26 
ATP2C1 -29.2 

AVP 13.6 
AVPR1A 6.3 
CHRNA1 5.5 
CLIC-5 1.24 
CNGB1 7.01 
DRD3 3.48 
EDN2 4.82 

EDNRA -2.53 
EDNRB -5.17 
ITPR1 -2.39 
MYLK3 5.06 

NOSTRN -2.95 
NPPB 1.56 
NPR1 -3.63 

NPY1R -3.89 
PRKG2 -2.13 
PTGS2 -3.16 

SCNN1A 5.03 
SPHK2 -1.75 
UTS2R 4.69 

 
 

Supplemental Table 3. Stiffness dependent gene expression in PASMC. PASMC were cultured 

on polyacrylamide substrates with stiffnesses of 0.4 and 25.6 kPa. After 48 h, RNA was isolated, 

reverse transcribed, and qPCR performed using the Human Hypertension RT2 Profiler PCR Array. 
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  Supplemental Table 4. Liu et al. 

 

 
 

Supplemental Table 4. Primer sequences. 
 

Gene 
Forward Primer 

Reverse Primer 

COL1A1 
CACACGTCTCGGTCATGGTA 

AAGAGGAAGGCCAAGTCGAG 

FN1 
ACCTCGGTGTTGTAAGGTGG  

CCATAAAGGGCAACCAAGAG 

PTGS1 
TCACACTGGTAGCGGTCAAG 

GTTCTTGCTGTTCCTGCTCC 

PTGS2 
CCGGGTACAATCGCACTTAT 

GGCGCTCAGCCATACAG 

PTGIR 
TTGCGGAAAAGGATGAAGAC 

GTGTGCTCCCTGCCTCTC 

GAPDH 
AATGAAGGGGTCATTGATGG 

AAGGTGAAGGTCGGAGTCAA 
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