Supplementary Methods

Genotyping of the Milwaukee cohort

genotyped 196,524 using DNA samples were for markers the Human Immuno BeadChip 1149691 (Illumina Inc., San Diego, CA, USA) according to the manufacture's protocol. Briefly, 200ng of DNA (4uL at 50ng/uL) was independently amplified, labeled, and hybridized to BeadChip microarrays then scanned with default settings using the Illumina iScan. Analysis was performed using Illumina's GenomeStudio Genotyping Module software v.2011. Genotype calls were initially generated using the Illumina-provided genotype cluster definitions file (ImmunoChip Gentrain June2010, generated using HapMap project DNA samples) with a Gencall cutoff of 0.15. This was followed by manual inspection of approximately 5,000 low call SNPs and SNPs with AB frequency greater than 0.55. Genotype calls for six specific SNPs were examined for correlation with Paneth cell morphology: ATG16L1 SNPs rs12994997 and rs2241880 (T300A); and NOD2 SNPs rs2066844 (R702W), rs2066845 (G908R), rs5743289, and rs5743293 (L1007x, SNP13).

cDNA library construction

Total RNA was isolated from ileal biopsy tissue using Qiagen RNeasy Minikit, according to the kit protocol. Total RNA was quantified using the Quant-iT[™] RiboGreen® RNA Assay Kit and normalized to 4ng/ul. An aliquot of 200ng for each sample was transferred into library preparation, which was an automated variant of the Illumina TruSeq[™] mRNA Sample Preparation Kit. This method preserves strand orientation of the RNA transcript. It uses oligo dT beads to select mRNA from the total RNA sample. It is followed by heat fragmentation and cDNA synthesis from the RNA template. The resultant cDNA then goes through library preparation (end repair, base 'A' addition, adapter ligation, and enrichment) using Broad Institute designed indexed adapters substituted in for multiplexing. After enrichment the libraries were quantified with qPCR using the KAPA Library Quantification Kit for Illumina Sequencing Platforms and then pooled equimolarly. The entire process is in 96-well format and all pipetting is done by either Agilent Bravo or Hamilton Starlet.

Illumina Sequencing

Pooled libraries were normalized to 2nM and denatured using 0.2 N NaOH prior to sequencing. Flowcell cluster amplification and sequencing were performed according to the manufacturer's protocols using either the HiSeq 2000 v3 or HiSeq 2500. Each run was a 76bp paired-end with an eight-base index barcode read. Data was analyzed using the Broad Picard Pipeline, which includes de-multiplexing and data aggregation.

Supplementary Table 1. Mitochondrial oxidative phosphorylation gene cluster that is

associated with Paneth cell phenotype.

Gene	Description
UQCRHL	ubiquinol-cytochrome c reductase hinge protein-like
NDUFB3	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3, 12kDa
	NADH dehydrogenase (ubiquinone) Fe-S protein 5, 15kDa (NADH-coenzyme Q
NDUFS5	reductase)
NDUFB1	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 1, 7kDa
NDUFA1	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1, 7.5kDa
COA3	cytochrome c oxidase assembly factor 3
	NADH dehydrogenase (ubiquinone) Fe-S protein 6, 13kDa (NADH-coenzyme Q
NDUFS6	reductase)
ATP5G1	ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9)
NDUFA9	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 9, 39kDa
COX5A	cytochrome c oxidase subunit Va
COX6A1	cytochrome c oxidase subunit VIa polypeptide 1
UQCRH	ubiquinol-cytochrome c reductase hinge protein
UQCRQ	ubiquinol-cytochrome c reductase, complex III subunit VII, 9.5kDa
UQCR10	ubiquinol-cytochrome c reductase, complex III subunit X
ATP5I	ATP synthase, H+ transporting, mitochondrial Fo complex, subunit E
NDUFAF2	NADH dehydrogenase (ubiquinone) complex I, assembly factor 2
ATP5G3	ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C3 (subunit 9)
ATP5J2	ATP synthase, H+ transporting, mitochondrial Fo complex, subunit F2
COX7B	cytochrome c oxidase subunit VIIb
ATP5H	ATP synthase, H+ transporting, mitochondrial Fo complex, subunit d
COX6B1	cytochrome c oxidase subunit VIb polypeptide 1 (ubiquitous)
NDUFA8	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8, 19kDa
NDUFB9	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9, 22kDa
UQCRFS1	ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1
ATP5J	ATP synthase, H+ transporting, mitochondrial Fo complex, subunit F6
NDUFB7	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 7, 18kDa
COQ5	coenzyme Q5 homolog, methyltransferase (S. cerevisiae)
COX7A2	cytochrome c oxidase subunit VIIa polypeptide 2 (liver)
NDUFB2	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 2, 8kDa
NDUFV3	NADH dehydrogenase (ubiquinone) flavoprotein 3, 10kDa
COX7C	cytochrome c oxidase subunit VIIc
COX5B	cytochrome c oxidase subunit Vb
COX6C	cytochrome c oxidase subunit VIc

NDUFA12	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 12
NDUFB10	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 10, 22kDa
COX8A	cytochrome c oxidase subunit VIIIA (ubiquitous)
ATP5O	ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit
COX4I1	cytochrome c oxidase subunit IV isoform 1
	NADH dehydrogenase (ubiquinone) Fe-S protein 4, 18kDa (NADH-coenzyme Q
NDUFS4	reductase)
ATP5L	ATP synthase, H+ transporting, mitochondrial Fo complex, subunit G
UQCRC1	ubiquinol-cytochrome c reductase core protein I
	NADH dehydrogenase (ubiquinone) Fe-S protein 3, 30kDa (NADH-coenzyme Q
NDUFS3	reductase)
ATP5F1	ATP synthase, H+ transporting, mitochondrial Fo complex, subunit B1
NDUFA2	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 2, 8kDa
COX7A1	cytochrome c oxidase subunit VIIa polypeptide 1 (muscle)
NDUFB5	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 5, 16kDa
ATP5E	ATP synthase, H+ transporting, mitochondrial F1 complex, epsilon subunit
ATP5C1	ATP synthase, H+ transporting, mitochondrial F1 complex, gamma polypeptide 1
NDUFB11	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 11, 17.3kDa
ATP5B	ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide

Supplementary Table 2. Paneth cell gene cluster that is associated with Paneth cell

phenotype.

Gene name	Description
MSI1	musashi RNA-binding protein 1
PLA2G2A	phospholipase A2, group IIA (platelets, synovial fluid)
CARD16	caspase recruitment domain family, member 16
REG3A	regenerating islet-derived 3 alpha
DEFA6	defensin, alpha 6, Paneth cell-specific
EMP2	epithelial membrane protein 2
EPHB2	EPH receptor B2
DEFA5	defensin, alpha 5, Paneth cell-specific
LYZ	lysozyme
SPINK1	serine peptidase inhibitor, Kazal type 1
LCN2	lipocalin 2
REG1A	regenerating islet-derived 1 alpha
PIGR	polymeric immunoglobulin receptor

Supplementary figure legends

Supplementary Figure 1. Detailed Paneth cell morphologic classifications of 4 independent Crohn's disease (CD) cohorts. (A) Saint Louis adult CD (n=170). (B) Los Angeles adult CD (n=361). (C) Saint Louis pediatric CD (n=73). (D) Milwaukee pediatric CD (n=44).

Supplementary Figure 2. *ATG16L1* T300A and *NOD2* risk alleles did not correlate with Paneth cell phenotype in pediatric Crohn's disease patients (n=44). (A) No significant difference was seen between the numbers of *ATG16L1* T300A risk alleles and the actual percentage of normal Paneth cells. P = 0.4284 by T test. (B) No significant difference was seen between the numbers of *NOD2* risk alleles and the actual percentage of normal Paneth cells. P = 0.8982 by ANOVA. (C) No significant difference was seen between the total sum numbers of *ATG16L1* T300A and *NOD2* risk alleles and the actual percentage of normal Paneth cells. P = 0.0888 by ANOVA.

Supplementary Figure 3. Different microbial compositions between Crohn's disease (CD; n=36) and non-inflammatory bowel disease (IBD; n=47) patients. (A) Differential feature analysis for CD patients versus non-IBD patients by LEfSe. Red bars represent taxa with a significantly higher relative abundance in CD patients. Blue bars represent taxa with a significantly higher relative abundance in non-IBD patients. (B) Stacked bar plots of phylum-level compositions of mucosal microbiome between CD and non-IBD patients. Each bar represents one patient. (C) Cladogram of differential taxa between CD and non-IBD patients analyzed by LEfSe.

Supplementary Figure 4. The mucosal microbiome of pediatric Crohn's disease (CD) patients stratified by Paneth cell phenotype. (A) Unweighted beta-diversity of microbiome between CD (n=36) and non-inflammatory bowel disease (IBD) patients (n=47) by principal coordinate analysis (P = 0.137). Red: CD patients with Type I Paneth cell phenotype. Blue: CD patients with Type II Paneth cell phenotype. (B) Stacked bar plots of phylum-level compositions of mucosal microbiome between Type I and Type II Paneth cell phenotypes. Each bar represents one patient.

Supplementary Figure 5. Correlation of microbiota alpha diversity and degree of Paneth cell defect by Pearson's correlation test. (A) Shannon index in Crohn's disease patients (n=36). (B) Shannon index in non-inflammatory bowel disease patients (n=47). (C) Faith's Phylogenetic index in Crohn's disease patients (n=36). (D) Faith's Phylogenetic index in non-inflammatory bowel disease patients (n=47).

Supplementary Figure 6. Comparison of beta-diversity metrics and taxonomic differences between Type I and II Paneth cell phenotypes in non-inflammatory bowel disease (IBD) patients (n=47). (A, B) Unweighted and weighted beta-diversity comparison within and between non-IBD patients with Type I and II Paneth cell phenotypes. *: P < 0.05; ****: P < 0.0001 by one-way ANOVA. (C) The cladogram of mucosal microbiome in non-IBD patients stratified by Paneth cell phenotype.

Supplementary Figure 7. Paneth cell phenotype correlates with different microbial taxa in Crohn's disease (CD) patients (n=36). (A) Differential feature analysis for CD patients with Type

I versus Type II Paneth cell phenotypes by LEfSe. Red bars represent taxa with a significantly higher relative abundance in CD patients with Type I Paneth cell phenotype. Blue bars represent taxa with a significantly higher relative abundance in CD patients with Type II Paneth cell phenotype. (B) Cladogram of differential taxa between CD patients with Type I and Type II Paneth cell phenotype analyzed by LEfSe.

Supplementary Figure 8. Transcriptome profiles between Type I and II Paneth cell phenotypes in pediatric CD patients (n=38 with sufficient RNA). Principle Coordinate Analysis (PCA) of CD patients with either Type I (Red) or Type II (Blue) Paneth cell phenotypes based on gene expression data.

Supplemental Figure 9. Expression of selected Paneth cell-specific genes is associated with Paneth cell phenotype in Crohn's disease (CD) patients (n=38 with sufficient RNA). (A) *DEFA6*; (B) *PLA2G2A*; (C) *REG3A*. (D) Selected bacterial taxa that are significantly more abundant in CD patients with high expression level of Paneth cell genes identified by Differential Feature analysis (LEfSe). **: P < 0.01 by one-way ANOVA.

0.2

0.0

Bacteroidetes

Firmicutes

0.2

0.0

С

В

Type II Paneth cell phenotype

С

Biomarker for Type I Paneth cells

