Abstract

Stimulation of β1-adrenergic receptor (β1AR), a GPCR, and the receptor for advanced glycation end-products (RAGE), a pattern recognition receptor (PRR), have been independently implicated in the pathogenesis of cardiomyopathy caused by various etiologies, including myocardial infarction, ischemia/reperfusion injury, and metabolic stress. Here, we show that the two distinctly different receptors, β1AR and RAGE, are mutually dependent in mediating myocardial injury and the sequelae of cardiomyopathy. Deficiency or inhibition of RAGE blocks β1AR- and RAGE-mediated myocardial cell death and maladaptive remodeling. Ablation or blockade of β1AR fully abolishes RAGE-induced detrimental effects. Mechanistically, RAGE and β1AR form a complex, which in turn activates Ca2+/calmodulin-dependent kinase II (CaMKII), resulting in loss of cardiomyocytes and myocardial remodeling. These results indicate that RAGE and β1AR not only physically crosstalk at the receptor level, but also functionally converge at the common mediator, CaMKII, highlighting a combined inhibition of RAGE and β1AR as a more effective therapy to treat diverse cardiovascular diseases, such as myocardial infarction, ischemia/reperfusion injury, and diabetic cardiovascular complications.

Authors

Weizhong Zhu, Sharon Tsang, David M. Browe, Anthony Y.H. Woo, Ying Huang, Chanjuan Xu, Jian-Feng Liu, Fengxiang Lv, Yan Zhang, Rui-ping Xiao

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement