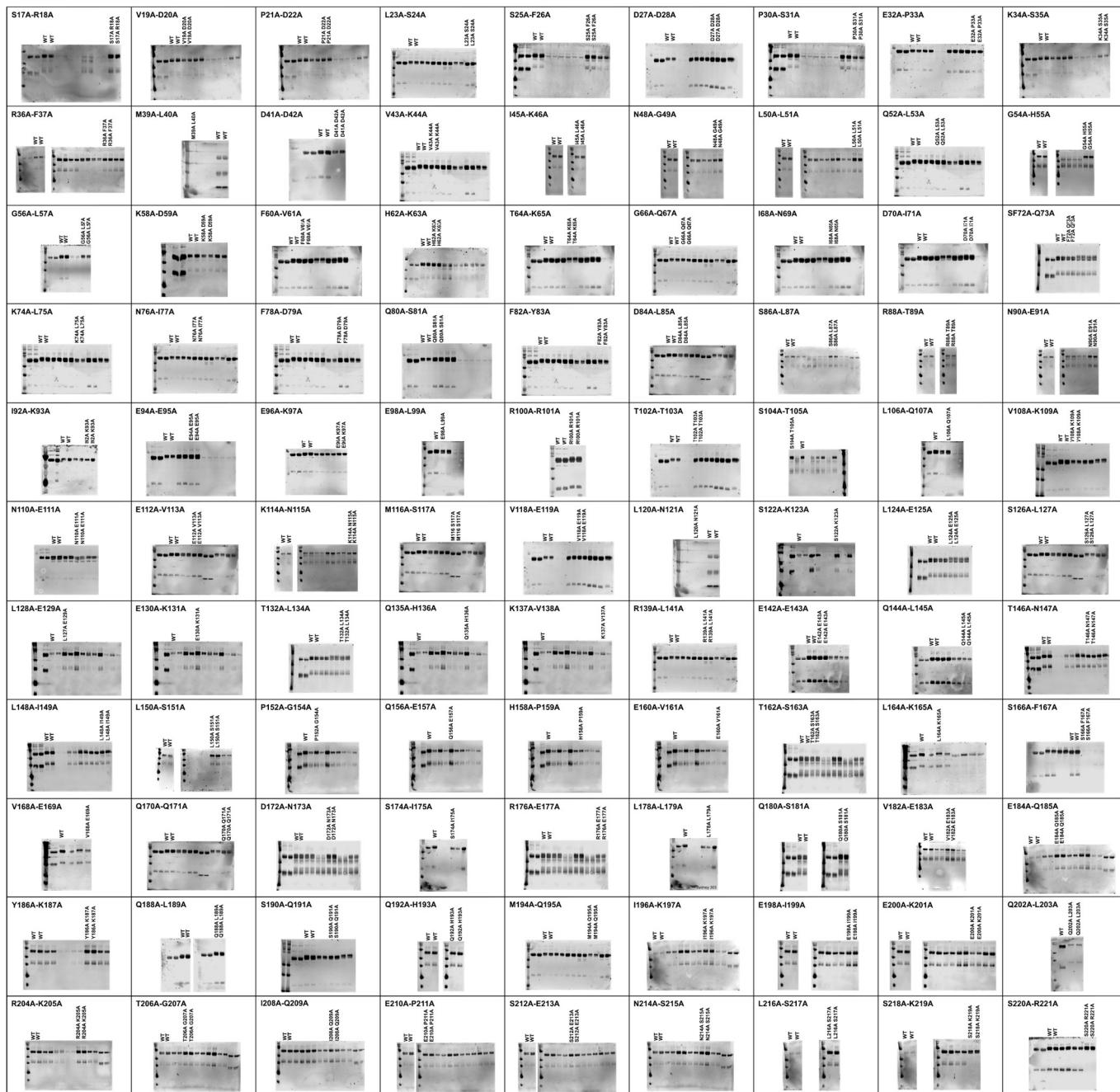


Angiopoietin-like 3 monomers are abundant in human plasma but are unable to inhibit endothelial lipase

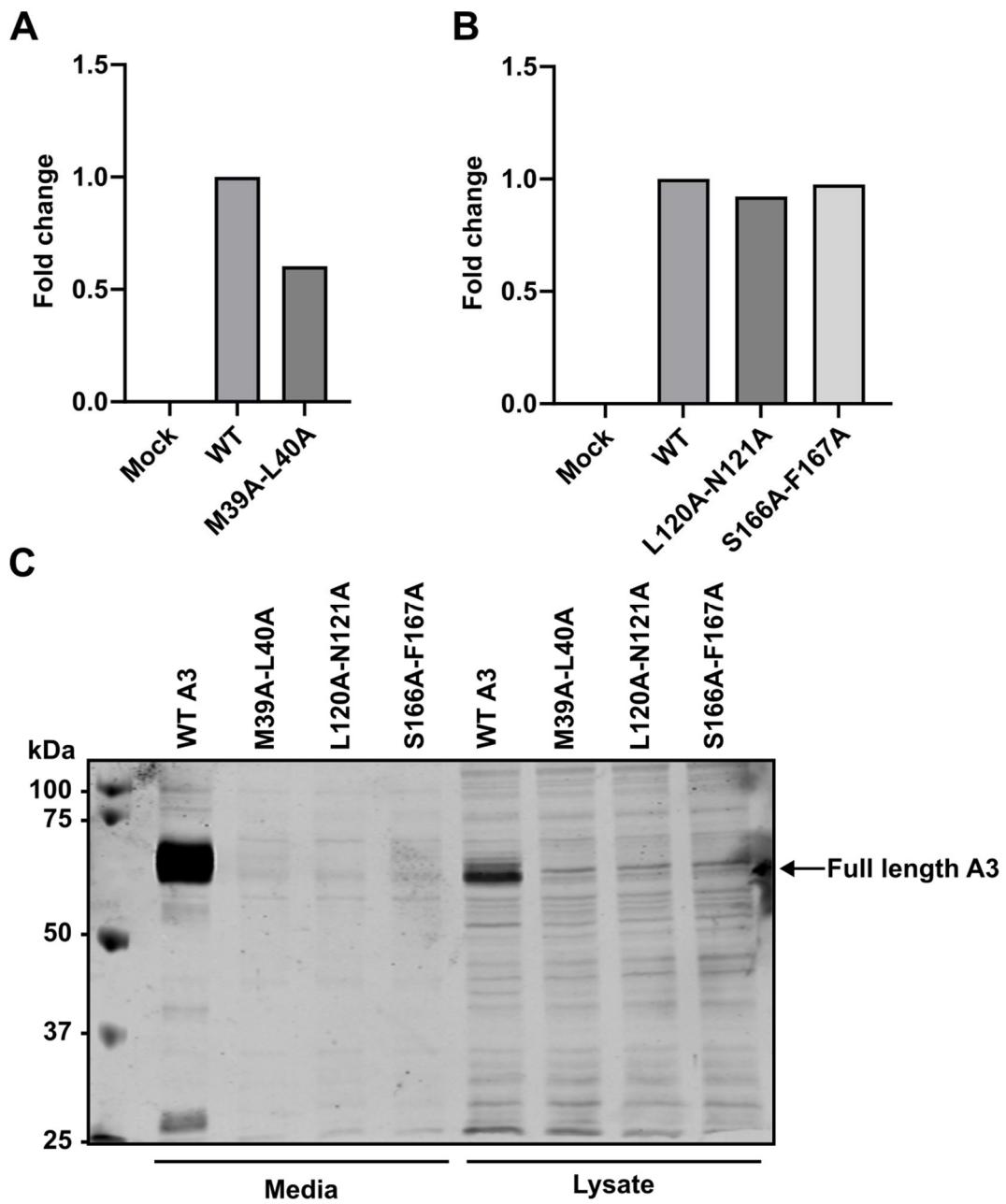
Sydney G. Walker¹, Yan Q. Chen², Kelli L. Sylvers-Davie¹, Alex Dou¹, Eugene Y. Zhen², Yuewei Qian², Yi Wen², Mariam Ehsani², Sydney Smith², Rakshya Thapa^{1,3}, Maxwell J. Mercer¹, Lucy Langmack¹, Bharat Raj Bhattarai^{1,3}, Michael Ploug^{4,5}, Robert J. Konrad², Brandon S. J. Davies^{1,*}

¹ Department of Biochemistry and Molecular Biology, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, IA 52242. ² Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285. ³ Department of Chemistry, Waldorf University, Forest City, IA 50436. ⁴Finsen Laboratory, Copenhagen University Hospital-Rigshospitalet, DK-2200 Copenhagen N, Denmark; ⁵Finsen Laboratory, Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen N, Denmark


*Address Correspondence to: Brandon S. J. Davies, Department of Biochemistry and Molecular Biology, University of Iowa, 169 Newton Rd., PBDB 3326, Iowa City, IA, 52242. Tel.: 319-335-3225; Fax: 319-335-9570; E-mail: brandon-davies@uiowa.edu.

Supplemental Table 1. Inhibitory activity and trimerization of ANGPTL3 mutants

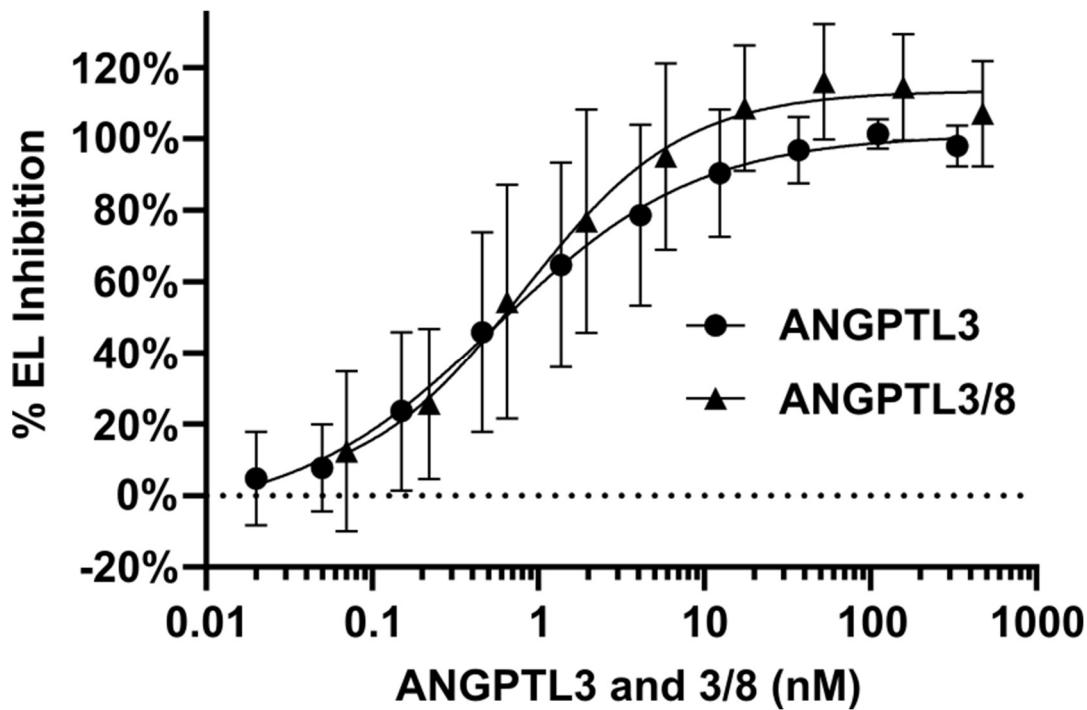
mutant	% inh	% tri	mutant	% inh	% tri	mutant	% inh	% tri
S17A-R18A	73	100	S86A-L87A	95	100	Q156A-E157A	100	80
V19A-D20A	102	100	R88A-T89A	87	90	H158A-P159A	94	100
P21A-D22A	96	100	N90A-E91A	91	100	E160A-V161A	72	50
L23A-S24A	100	90	I92A-K93A	6	30	T162A-S163A	102	80
S25A-F26A	105	100	E94A-E95A	119	90	L164A-K165A	37	0
D27A-D28A	84	90	E96A-K97A	149	90	S166A-F167A	ND	ND
P30A-S31A	105	100	E98A-L99A	-10	10	V168A-E169A	70	60
E32A-P33A	104	90	R100A-R101A	21	50	Q170A-Q171A	88	70
K34A-S35A	122	100	T102A-T103A	81	90	D172A-N173A	108	80
R36A-F37A	10	80	S104A-T105A	105	100	S174A-I175A	30	20
M39A-L40A	ND	ND	L106A-Q107A	-2	20	R176A-E177A	103	80
D41A-D42A	26	70	V108A-K109A	107	90	L178A-L179A	54	70
V43A-K44A	36	100	N110A-E111A	92	100	Q180A-S181A	105	80
I45A-L46A	11	90	E112A-V113A	-27	10	V182A-E183A	98	90
N48A-G49A	52	80	K114A-N115A	108	100	E184A-Q185A	115	90
L50A-L51A	-6	60	M116A-S117A	40	60	Y186A-K187A	100	90
Q52A-L53A	9	30	V118A-E119A	111	90	Q188A-L189A	34	0
G54A-H55A	28	90	L120A-N121A	ND	ND	S190A-Q191A	86	90
G56A-L57A	22	90	S122A-K123A	56	60	Q192A-H193A	76	50
K58A-D59A	88	70	L124A-E125A	6	10	M194A-Q195A	117	90
F60A-V61A	21	30	S126A-L127A	39	0	I196A-K197A	75	50
H62A-K63A	45	80	L128A-E129A	91	90	E198A-I199A	33	20
T64A-K65A	20	50	E130A-K131A	27	20	E200A-K201A	102	80
G66A-Q67A	86	90	T132A-L134A	8	30	Q202A-L203A	1	40
I68A-N69A	4	40	Q135A-H136A	94	90	R204A-K205A	104	80
D70A-I71A	3	20	K137A-V138A	-4	0	T206A-G207A	95	90
F72A-Q73A	62	40	R139A-L141A	-2	20	I208A-Q209A	99	90
K74A-L75A	11	40	E142A-E143A	11	30	E210A-P211A	97	80
N76A-I77A	87	100	Q144A-L145A	19	30	S212A-E213A	96	90
F78A-D79A	22	60	T146A-N147A	104	90	N214A-S215A	92	90
Q80A-S81A	122	100	L148A-I149A	88	70	L216A-S217A	116	90
F82A-Y83A	5	30	L150A-S151A	90	100	S218A-K219A	112	60
D84A-L85A	11	0	P152A-G154A	87	90	S220A-R221A	100	100


Levels of EL inhibition (% inh) and trimerization (% tri) of each ANGPTL3 mutant as compared to wild-type ANGPTL3. ND = not determined

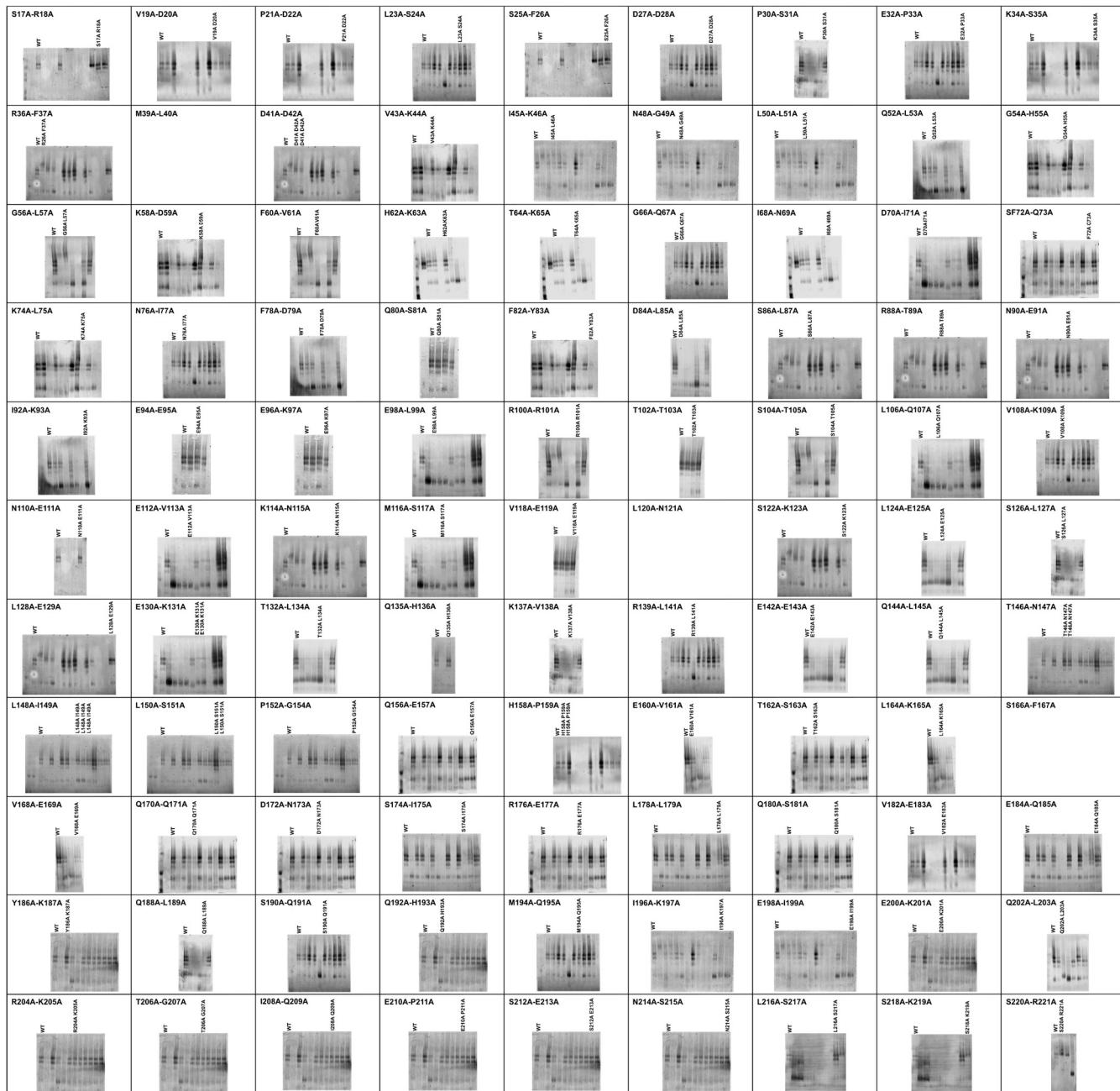
Supplemental Figure 1

Supplemental Figure 1: Protein expression of ANGPTL3 mutants. Western blots of conditioned media expressing either wild-type or mutant protein.

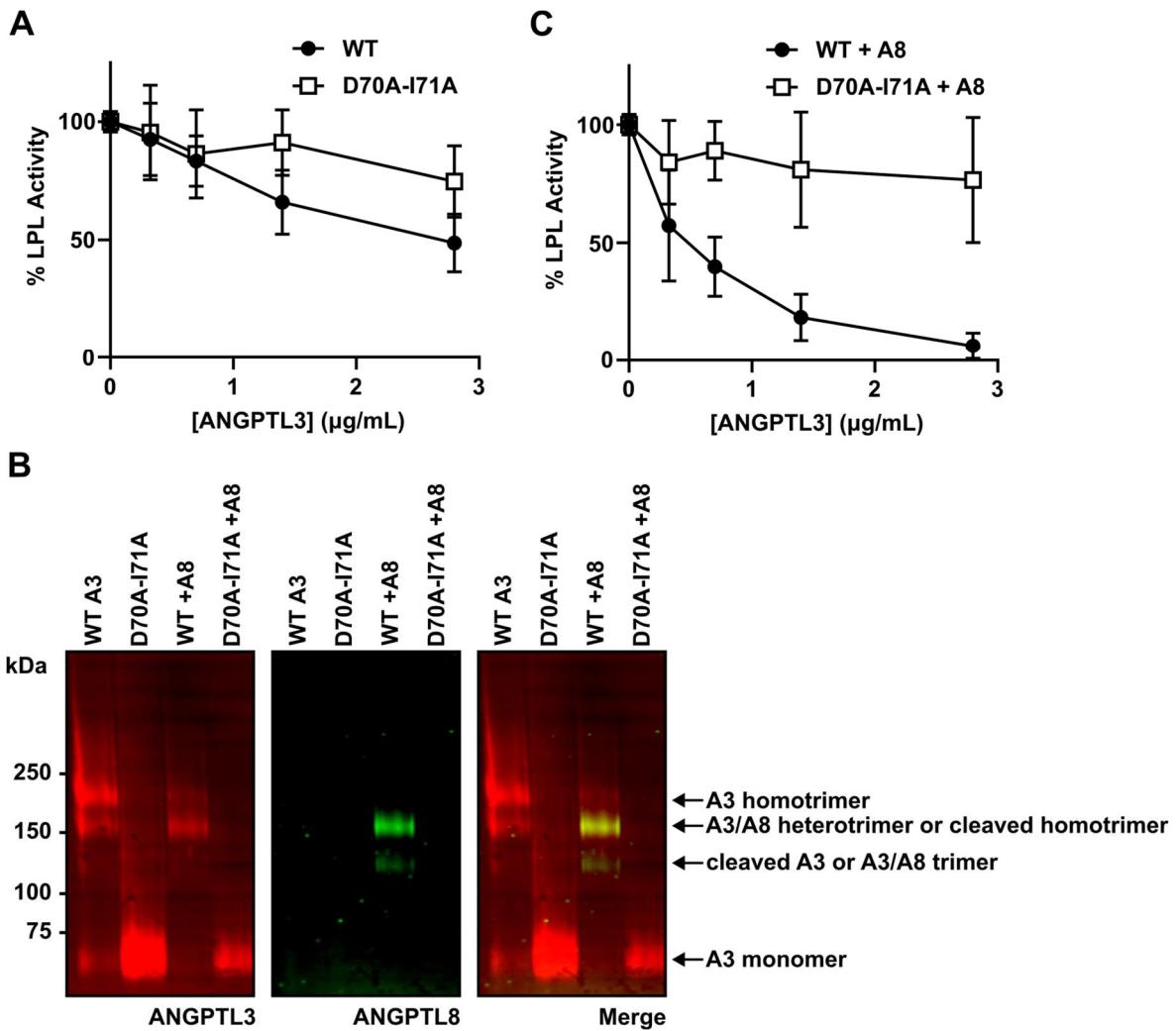
Supplemental Figure 2


Supplemental Figure 2: ANGPTL3 mutants M39A-L40A, L120A-N121A, and S166A-F167A do not produce viable protein. (A-B) mRNA expression of *Angptl3* in cells transiently transfected with constructs expressing either wild-type or the indicated mutant ANGPTL3 as measured by qPCR. Bars represent the fold change in expression compared to wild-type ANGPTL3-transfected cells. (C) Western blot of media and cell lysates from cells transiently transfected with wild-type or the indicated mutant ANGPTL3.

Supplemental Figure 3


Supplemental Figure 3: EL inhibition by ANGPTL3 mutants. Increasing concentrations of wild-type ANGPTL3 or the indicated ANGPTL3 mutant were incubated with EL for 30 minutes at 37°C. The phospholipase activity of EL was measured using a fluorescence-based phospholipase assay. Points of each line represent the data of an individual replicate. For each graph, the activity was normalized to the control treated with EL and 0 μ g/ml ANGPTL3. Mutants tested simultaneously used the same WT control.

Supplemental Figure 4


Supplemental Figure 4: ANGPTL3 and ANGPTL3/8 inhibition of EL. The ability of ANGPTL3 or ANGPTL3/8 to inhibit EL at 37°C was assessed using an EL stable expression cell line and phospholipase A1 selective substrate. Fluorescence was monitored with an excitation wavelength of 485 nm and an emission wavelength of 516 nm. Readings were taken at 1 and 30 min, with the 1-minute reading subtracted from the 30-minute reading to correct for background fluorescence. Results are shown as the mean \pm SD (n=8-10) from three independent experiments for ANGPTL3 and four independent experiments for ANGPTL3/8.

Supplemental Figure 5

Supplemental Figure 5: Oligomerization of ANGPTL3 mutants. Blue nativePAGE gel electrophoresis followed by immunoblotting of wild-type or the indicated ANGPTL3 mutant.

Supplemental Figure 6

Supplemental Figure 6: Inhibition of LPL by mutant ANGPTL3. **(A)** Triglyceride lipase activity of LPL after incubation with the indicated concentrations of wild-type ANGPTL3 or ANGPTL3 D70A-I71A. LPL and ANGPTL3 were incubated for 30 minutes at 37°C and then triglyceride activity was measured using a fluorescence-based assay. Points represent the mean (\pm SD) of three independent experiments performed in duplicate. For each graph, the activity was normalized to the control treated with LPL and 0 μ g/ml ANGPTL3. **(B)** Conditioned media containing wild-type and mutant mouse ANGPTL3 expressed with and without ANGPTL8 (A8) were run on blue nativePAGE gels and blotted for ANGPTL3 (red) and ANGPTL8 (green). **(C)** Triglyceride lipase activity of LPL after incubation with the indicated concentrations of wild-type ANGPTL3 or ANGPTL3 D70A-I71A, both co-expressed with ANGPTL8. LPL and ANGPTL3/8 were incubated for 30 minutes at 37°C and then triglyceride activity was measured using a fluorescence-based assay. Points represent the mean \pm SD of three independent experiments performed in duplicate. For each graph, the activity was normalized to the control treated with LPL and 0 μ g/ml ANGPTL3/8.