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We previously showed that bronchoalveolar lavage (BAL) transcriptomes representing pulmonary inflammation and
cellular injury can phenotype post-HCT lung injury and predict mortality. To test whether peripheral blood might be a
suitable surrogate for BAL, we compared 210 paired BAL and blood transcriptomes obtained from 166 pediatric patients
with HCT at 27 hospitals. BAL and blood RNA abundance showed minimal correlation at the level of individual genes,
gene set enrichment scores, imputed cell fractions, and T and B cell receptor clonotypes. Instead, we identified significant
site-specific transcriptional programs. In BAL, pathways related to immunity, hypoxia, and epithelial mesenchymal
transition were tightly coexpressed and linked to mortality. In contrast, in blood, expression of endothelial injury, DNA
repair, and cellular metabolism pathways was associated with mortality. Integration of paired BAL and blood
transcriptomes dichotomized patients into 2 groups with significantly different rates of hypoxia and clinical outcomes
within 1 week of BAL. These findings reveal a compartmentalized injury response, where BAL and blood transcriptomes
provide distinct but complementary insights into local and systemic mechanisms of post-HCT lung injury.
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Introduction
Hematopoietic stem cell transplantation (HCT) combines high-dose chemotherapy and/or radiation with 
i.v. infusion of  hematopoietic progenitor cells in order to eradicate and replace malignant or dysfunctional 
cellular lineages (1). While the number of  HCT procedures has increased dramatically and outcomes have 
improved over time, safety remains a concern. Specifically, acute or chronic lung injury can develop in 
20%–40% of  patients due to chemotherapy toxicity, infections, and/or immune dysregulation (2, 3). Post-
HCT lung injury can lead to impaired quality of  life and premature death (4, 5). Treatments largely include 
supportive care, antiinfectives, and attempts at immune modulation where possible but are limited by a 
need for deeper understanding of  the lung microenvironment after HCT (6).

Therefore, the Pediatric Transplant and Cell Therapy Consortium (PTCTC) undertook a broad 
cross-sectional study of  patients undergoing bronchoalveolar lavage (BAL) as diagnostic evaluation for 
post-HCT lung injury. We measured pulmonary microbiomes and paired human lung gene expression in 
BAL samples and identified 4 lung injury subtypes with varying degrees of  dysbiosis, infection, inflamma-
tion, and cellular injury (7). This approach challenged previous clinical diagnoses such as idiopathic pneu-
monia syndrome (IPS) by increasing detection of  pathogens and clarifying dominant biologic processes in 
the lung. Importantly, clinical outcomes varied significantly across the 4 subtypes, providing a biology-guid-
ed framework for risk stratification in this population. For example, patients with depleted pulmonary 
microbiomes, upregulated T cell signaling, diminished alveolar macrophage activity, and signs of  epithelial 
mesenchymal transition (EMT) had 3- to 4-fold higher in-hospital mortality than their counterparts.

It remains crucial to determine whether these processes are compartmentalized to the lung or are 
indicative of  systemic disease, as this could affect the development of  both precision medicine diagnostics 
and treatments. From a diagnostic standpoint, BAL is a medically invasive procedure that is limited to 
those with acceptably low illness severity and is not well suited for serial sampling to monitor disease evo-
lution or treatment-response (8, 9). Thus, surrogates of  lung biology obtained through noninvasive testing 
such as blood sampling could enable more nimble diagnosis and disease tracking. From a therapeutic 
standpoint, understanding whether and how these lung processes are reflected in or regulated by the blood 
compartment could inform whether eventual treatments ought to be delivered directly to the lung, through 
the blood, or both.

Thus, we undertook a systems biology approach to compare paired BAL and peripheral blood sam-
ples from pediatric patients with post-HCT lung injury. We questioned whether peripheral blood tran-
scriptomes would correlate with key aspects of  BAL transcriptomes that we had previously linked to 
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disease evolution and clinical outcomes. Here we present an integrated approach to understanding BAL, 
blood, and combined signatures of  post-HCT lung injury that advance our understanding of  local and 
systemic disease processes after pediatric HCT.

Results

Patient characteristics
As previously described, the PTCTC SUP1601 study enrolled 229 pediatric patients with HCT who devel-
oped post-HCT lung injury and underwent 278 clinically indicated BAL procedures (7). Patients were 
enrolled across 32 children’s hospitals in the United States, Canada, and Australia between 2014 and 2022. 
For this study, paired peripheral blood was collected during BALs and 210 BAL-blood pairs in 166 patients 
from 27 hospitals were included for analysis (Figure 1). Patients varied broadly in age, sex, race, ethnicity 
and geography; transplant indication was most commonly hematologic malignancy followed by receipt 
of  mostly bone marrow or peripheral blood allografts from a variety of  donor types (Table 1). Post-HCT 
lung injury signs and symptoms included hypoxia, dyspnea, declining pulmonary function testing, and/
or abnormal chest imaging and often developed in conjunction with other complications such as graft 
versus host disease (GVHD; Table 2). BAL was performed a median 131 days after HCT (IQR, 37–376), 
at which point the cohort displayed a median absolute neutrophil count (ANC) of  3,042 cells/μL (IQR, 
1,620–5,511) and a median absolute lymphocyte count (ALC) of  482 cells/μL (IQR, 184–1,159); approx-
imately half  of  the cohort required supplemental oxygen at the time of  sample collection. Based on BAL 
clinical microbiology results, lung injury was classified as lower respiratory tract infection (95 of  210), non-
pulmonary sepsis (4 of  210), or IPS (111 of  210). After each patient’s most recent BAL, 85 of  166 patients 
required intensive care (51%), 48 required ≥ 7 days of  mechanical ventilation (29%), and 32 patients died 
prior to hospital discharge (19%).

Contrasting transcriptomes in paired BAL and peripheral blood
We hypothesized that both BAL and peripheral blood could yield complementary insight into pulmonary 
disease states in this cohort. To contrast the information captured in each sample type, we first compared 
BAL and blood sample pairs. We observed tissue-specific differential gene expression, with 6,156 genes 
showing greater expression in BAL and 9,368 genes showing greater expression in blood (Figure 2A and 
Supplemental Data File 1; supplemental material available online with this article; https://doi.org/10.1172/
jci.insight.194440DS1). For example, as expected, Surfactant Protein C (SFTPC) was expressed to a greater 
level in BAL, whereas Hemoglobin subunit Alpha 2 (HBA2) was expressed to a greater level in blood (Figure 
2B). Many canonical lung-specific genes were detected in the blood of  many patients (e.g., SFTPC 53/210, 
MUC5AC 92/210, LAMP3 180/210), albeit rarely above 1 read per million per sample.

To understand the different regulatory networks unique to each body site, we next tested for tissue-spe-
cific differential gene coexpression. When assessing enrichment scores to the 50 MSigDB Hallmark gene 
sets (10), differential coexpression networks revealed highly site-specific interactions (Supplemental Data 
File 2). Of  note, 39 gene sets were coexpressed in BAL but not blood; for example, Hallmark Hypoxia 
expression scores were correlated with Hallmark IFN-α and IFN-γ signaling, DNA repair signaling, and 
oxidative phosphorylation signaling in the lung (correlation ≥ 0.5) but not in the blood (correlation < 0.1, 
FDR-adjusted P < 0.05). In contrast, 9 gene sets were coexpressed in blood but not BAL; for example, 
Hallmark DNA Repair expression scores were correlated with early region 2 binding factor (E2F) signaling 
in the blood (correlation ≥ 0.5) but not in the lung (correlation < 0.1, FDR-adjusted P < 0.05; Figure 2C). 
Thus, overall, BAL gene networks showed much stronger coexpression than blood gene networks (Figure 
2D and Supplemental Figure 1), suggesting synchronization of  biological pathways in the lung.

Given the site-specific differences in expression levels and coexpression networks, we next sought to 
determine the degree of  cross–body site transcriptome correlation. For any given gene, there was mini-
mal correlation between BAL and blood expression levels (median Spearman rho = –0.005; IQR, –0.056 
to –0.002; Supplemental Data File 3 and Figure 2E). As an example, the lack of  BAL-blood correlation 
for CXCL8 gene expression is depicted in Figure 2E. Similar results were found when analyzing enrich-
ment scores to broader gene networks in the MSigDB collection (Supplemental Data File 4 and Figure 
2E) and when analyzing imputed cell fractions (Supplemental Data File 5 and Figure 2E). For example, 
the imputed fraction of  neutrophils in BAL and blood sample pairs showed no correlation (Spearman 
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correlation = –0.099, FDR-adjusted P = 0.520). Patient-level cell fractions in BAL and blood are depict-
ed in Supplemental Figure 2 to demonstrate the lack of  cross-site correlation. Of  note, the blood ANC 
correlated with imputed blood neutrophil fraction (Spearman rho = 0.462, P < 0.001) but not BAL neu-
trophil fraction (Spearman rho=0.043, P = 0.549). We then calculated T and B cell receptor clonotypes 
using ImReP; we detected a median 16 TRA clonotypes in BAL (IQR, 8–31; range, 0–271) and 25 TRA 
clonotypes in blood (IQR, 13–42; range, 0–148) but no T-cell receptors alpha (TRA) clonotypes were 
shared across BAL-blood pairs (except 1 clonotype in 1 of  210 sample pairs). Similar results were found 
for T-cell receptors beta, gamma, and delta; immunoglobin heavy chain (IGH); kappa light chain (IGK); 
and lambda light chain (Supplemental Data File 6). Together, these data highlight the uniqueness of  the 
biological information contained in both BAL and blood.

BAL and peripheral blood transcriptomes differ by survival outcome
To better understand site-specific and cross-site contributors to survival, we next contrasted transcriptomes in 
survivors and nonsurvivors. We again observed tissue-specific differential gene expression in nonsurvivors. In 
BAL, expression levels of  350 genes were associated with death; overall, nonsurvivors had increased expres-
sion of  genes related to epithelial injury and hypoxia (e.g., SPP1, SFTPB, CEACAM6) and lower expression 
of  genes related to innate immune signaling (e.g., CSF3R, CXCR1, IL1B, CXCL8; Supplemental Data File 
7 and Figure 3A). In blood, expression levels of  656 genes were associated with death; nonsurvivors had 
increased expression of  genes related to endothelial cell junction and smooth muscle activity (e.g., JCAD, 
PTGFR) and lower expression of  genes related to lymphocyte signaling (e.g., JCHAIN, CCR7; Supplemental 
Data File 8 and Figure 3B). Genes associated with death in BAL and in blood showed minimal overlap 
(Figure 3C), again indicating different site-specific contributors to outcome. Notably, CEACAM6, LGMN, 
and BCAT1 showed increased expression in both BAL and blood of  nonsurvivors, while CD74, MUC5B, 
HLA.DRB1 and HLA.DPB1, and CFD showed lower expression in both BAL and blood of  nonsurvivors.

In many diseases, genes maintain stable expression levels but exhibit altered coexpression patterns with 
other genes, suggesting that they influence pathobiology through network reorganization rather than height-
ened expression (11, 12). Therefore, we next tested for tissue-specific differential gene coexpression unique 
to nonsurvivors. In BAL, a network of  10,038 genes was coexpressed in nonsurvivors, but these genes were 
not coexpressed in survivors (Spearman rho ≥ 0.5 in nonsurvivors versus rho < 0.1 in survivors, FDR < 0.05; 
Supplemental Data File 9). Top hub genes included CEACAM6, which was coexpressed with 563 other genes 
related to platelet signaling and endoplasmic reticulum stress; CXCL17, which was coexpressed with 387 
other genes related to immune signaling and hypoxia; and NFAM1, which was coexpressed with 1,441 genes 
related to EMT and lung morphogenesis (Figure 4A). In contrast, in blood, a network of  6,929 genes was 
correlated in blood of  nonsurvivors but not survivors (Supplemental Data File 10). Top hub genes included 
ZNF707, which was coexpressed with 203 other genes representing cell cycle transitions and DNA repair, 
and GARRE1, which was coexpressed with 251 other genes representing heme metabolism (Figure 4B). 
These gene coregulatory networks complement the gene expression pathways noted above and accentuate 
the differences in biologic activity identified in BAL versus peripheral blood specimens.

Although we observed minimal BAL-blood transcriptome correlation in the overall cohort, we hypoth-
esized that nonsurvivors might show greater cross-site correlation due to systemic illness and increased 

Figure 1. Study design. (A) Geographic location of participating children’s hospitals. (B) Patients were followed from the time of conditioning chemotherapy 
for the development of pulmonary symptoms. If bronchoscopy with bronchoalveolar lavage was planned for clinical reasons, patients were enrolled and BAL 
with a paired blood sample was collected. Patients were then followed clinically through hospital discharge.
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signaling across the alveolar-capillary membrane. However, we did not identify any gene sets that were 
differentially correlated between BAL and blood according to survivor status (all FDR-adjusted P > 0.1; 
Supplemental Data File 11). For example, Hallmark Hypoxia gene expression signaling in BAL and blood 
were minimally correlated in both survivors and nonsurvivors (P > 0.05), and these correlations were not 
significantly different (FDR-adjusted P = 0.994). This indicates that even the sickest patients do not show 
significant cross-site transcriptome correlation.

BAL and peripheral blood transcriptomes differ by lung injury subtype
We previously identified 4 subtypes of  HCT-related lung injury based on BAL transcriptome-microbiome 
signatures (7, 13, 14). These subtypes varied not only in clinical outcomes but also in burden of  infec-
tion, microbiome dysbiosis, inflammation, and cell injury (Figure 5A). Of  note, lung injury Subtype 1 was 
defined by alveolar macrophage (AM) predominance, a replete and balanced microbiome, minimal signs 

Table 1. Patient characteristics

Patient characteristics (n = 166 patients)

Age (median years, IQR) 11.1 (IQR, 4.7–17.0)
Sex (male) (n, %) 95 (57.2%)
Race (n, %)

White 102 (61.4%)
Black 20 (12.0%)
Asian/Pacific Islander 20 (12.0%)
Other/multiple 19 (11.4%)
Native American 1 (0.6%)
Unknown 4 (2.4%)

Ethnicity – Latino/Hispanic (n, %) 40 (24.1%)
Region (n, %)

United States
Mid-Atlantic 18 (10.8%)
Midwest 24 (14.5%)
Northeast 9 (5.4%)
South 11 (6.6%)
Southwest 11 (6.6%)
West 67 (40.4%)

Non-US
Australia 21 (12.7%)
Canada 5 (3.0%)

Disease (n, %)
Leukemia, Lymphoma 109 (65.7%)
Inborn errors of immunity 30 (18.1%)
Nonmalignant hematologic 17 (10.2%)
Solid tumor 6 (3.6%)
Inborn errors of metabolism 4 (2.4%)

HCT type (n, %)
Allogeneic 158 (95.2%)

Bone marrow 69 (43.7%)
Peripheral blood 63 (39.9%)
UCB 26 (16.5%)

Autologous 8 (4.8%)
HLA match, allogeneic only (n, %)

Matched related donor 31 (19.6%)
Matched unrelated donor (including 6/6 UCB) 37 (23.4%)
Mismatched related donor (haploidentical) 44 (27.8%)
Mismatched unrelated donor (including < 6/6 UCB) 46 (29.1%)

Data for each patient (n = 166) are shown. Count data are described with numbers and percentages; distributions are 
described with median and interquartile range (IQR). UCB, umbilical cord blood.
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of  inflammation, and superior clinical outcomes. To better understand the biology of  these lung injury sub-
types, we next contrasted BAL and blood transcriptome pairs in reference to the best-performing Subtype 1, 
with results summarized in Figure 4 and Table 3 and described in detail below.

Subtype 2. We previously showed that patients with Subtype 2 had higher rate of  pulmonary bacterial 
infections and low in-hospital mortality. In BAL, Subtype 2 patients differentially expressed 2,027 genes 
(|LFC| ≥ 1, FDR-adjusted P < 0.05), including higher expression of  genes related to granulocyte and 
inflammasome pathways (e.g., CXCR1, IL1R2, S100A8) and lower expression of  genes related to macro-
phage and lymphocyte signaling (e.g., CCL18, APOE, HLA.DRA; Figure 5B). Supporting this, cell decon-
volution showed an increase in BAL neutrophil fraction and a decrease in the AM fraction relative to Sub-
type 1 (Supplemental Data File 12). Patients with Subtype 2 had unique BAL coexpression of  a network 
of  9,181 genes including top hubs NLRP3, CXCR1, and ALPL, which together showed enrichment for 
immune activation, cell-cell adhesion, platelet activity, and extracellular matrix interactions (Supplemental 
Data File 13). In peripheral blood, Subtype 2 patients differentially expressed 1,061 genes, including higher 
expression of  genes related to thyroid activity (e.g., CALCA, TPO, DIO2) and lower expression of  genes 
related to heme metabolism (e.g., HBD, HBG2) with no differences in blood cell fractions noted (Supple-
mental Data File 14). These patients also had greater blood coexpression of  a network of  8,347 genes, 
including top hubs NUP210, CDH13, and COL6A6, which together represent DNA replication, oxidative 

Table 2. Event characteristics

Event Characteristics (n = 210 events with BAL)
Days from HCT to BAL (median, IQR) 131.0 (IQR, 37.0–375.5)
Days from symptoms to BAL (median, IQR) 8.0 (IQR, 2.0–22.0)
Respiratory support prior to BAL (n, %)
No oxygen 121 (57.6%)
Nasal cannula or noninvasive positive pressure 55 (26.2%)
Endotracheal intubation with mechanical ventilation 34 (16.2%)
Comorbidities at time of BAL (n, %)*
GVHD active at time of BAL 68 (32.4%)
GVHD ever preceding BAL 100 (47.6%)
GVHD pulmonary 20 (9.5%)
Kidney injury 32 (15.2%)
Sepsis 28 (13.3%)
Pericardial effusion 16 (7.6%)
Pulmonary hemorrhage 15 (7.1%)
Engraftment syndrome 13 (6.2%)
TMA 13 (6.2%)
VOD 12 (5.7%)
Heart failure 9 (4.3%)
Immunologic function prior to BAL (median, IQR)
ANC (cells/mL) 3.042 (IQR, 1.620–5.511)
ALC (cells/mL) 0.482 (IQR, 0.184–1.159)
Diagnosis without NGSA (n, %)
Idiopathic pneumonia syndrome 111 (52.9%)
Lower respiratory tract infection 95 (45.2%)
Sepsis 4 (1.9%)
Outcomes (n = 166 patients)
Required intensive care (n, %) 85 (51.2%)
Mechanical ventilation ≥ 7 days (n, %) 48 (28.9%)
In-hospital mortality (n, %) 32 (19.3%)

Data for each patient (n = 166) and each clinical event with BAL and blood collection (n = 210) are shown. Count data 
are described with numbers and percentages; distributions are described with median and interquartile range (IQR). 
AWith reclassification based on mNGS results, 44 cases of IPS (21%) and 162 cases of LRTI (77%), see PMID 38783139 
and processed data files for details. GVHD, graft versus host disease; TMA, thrombotic microangiopathy; VOD, hepatic 
veno-occlusive disease; ANC, absolute neutrophil count in blood; ALC, absolute lymphocyte count in blood. NGS, next 
generation sequencing.
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phosphorylation, and cellular metabolism (Supplemental Data File 15). Comparison of  enriched pathways 
in BAL and blood showed only 1 overlapping gene set: Hallmark Heme Signaling was lower in both BAL and 
blood of  patients with Subtype 2. These data illustrate that, in patients with Subtype 2, pulmonary bacterial 
infections and a pulmonary neutrophil response are associated with systemic signs of  increased blood cell 
metabolic activity without clear shifting of  the fractions of  blood cell types.

Subtype 3. In contrast, patients with Subtype 3 showed a high rate of  pulmonary microbiome depletion 
as well as high mortality. In BAL, Subtype 3 patients differentially expressed 8,166 genes, including higher 
expression of  genes related to fibroblast activation, myogenesis, and nitric oxide signaling (e.g., FGF3, 
BMP1, NOS) and lower expression of  genes related to macrophage signaling (e.g., CD74, FTL, HLA.DRA) 
and response to hypoxia (e.g., HIF1A, HMOX1; Figure 5C). In conjunction, cell deconvolution showed an 
increase in BAL CD4+ and CD8+ lymphocyte fractions and a decrease in the AM fraction relative to Sub-
type 1 (Supplemental Data File 16). Patients with Subtype 3 had unique BAL coexpression of  a network 

Figure 2. Differential gene expression and coexpression in BAL and paired blood samples. (A) Genes differentially expressed in BAL versus peripheral 
blood are shown. (B) Expression levels of select genes specific to lung (SFTPC, MUC5AC) and blood (HBA2, HBB). (C) Gene set enrichment scores to the 
50 MSigDB Hallmark Pathways were calculated, and correlation between expression of each gene set was calculated within each body site and then 
contrasted to identify site-specific coregulation. Here we show unique coexpression of Hallmark Hypoxia and IFN-γ gene sets in BAL but not blood as well 
as unique coexpression of Hallmark DNA Repair and E2F targets in blood but not BAL. (D) Correlation of MSigDB Hallmark pathways within blood (top 
right triangle) and within BAL (bottom left triangle) are shown. See Supplemental Figure 1 for detailed labels. (E) BAL-blood correlation was calculated for 
expression levels of n = 7,169 protein-coding genes, and the distribution of correlation coefficients is plotted. Expression levels of CXCL8 in BAL and blood 
are shown as an example of minimal correlation. Gene set enrichment scores for the MSigDB Hallmark Inflammatory Response gene set measured in BAL 
and blood are also shown as an example of minimal BAL-blood correlation. BAL and peripheral blood cell type fractions were imputed using CIBERSORTx 
and reference atlases, and cell fractions across body sites were correlated using Spearman correlation coefficients, with neutrophils and CD8+ T cells shown 
as examples. T and B cell receptor clonotypes were measured using ImReP, and the number of unique clonotypes across body sites were correlated using 
Spearman correlation coefficients, with TRA shown as an example.
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of  6,724 genes, including top hubs SIGLEC1, PTPRC, and HADHB, which together showed enrichment 
for collagen deposition, integrin interactions, and EMT (Supplemental Data File 17). In peripheral blood, 
Subtype 3 patients differentially expressed 574 genes, including higher expression of  genes related to colla-
gen deposition and EMT (e.g. COL4A1, LAMA5, TIMP3), with no differences in blood cell fractions noted 
(Supplemental Data File 18). These patients also had greater blood coexpression of  9,269 genes, including 
top hubs ANO6, GPD2, and TLR8, which together represented DNA repair, T cell signaling, and heme 
metabolism (Supplemental Data File 19). Unique to Subtype 3, comparison of  enriched pathways in BAL 
and blood showed substantial overlap for genes related to EMT and endothelial activation. These data illus-
trate that, in patients with Subtype 3, pulmonary microbiome depletion, T cell activation, and profibrotic 
signaling coocur with systemic signs of  EMT.

Subtype 4. Finally, patients with Subtype 4 showed both commensal microbiome depletion and viral 
infection, again with high mortality rates. In BAL, patients with Subtype 4 differentially expressed 
6,252 genes, including higher expression of  genes related to NK/T cell activity (e.g. IL2, KLRF1, IFNG, 
IFNA6; Figure 5B), β-defensins (DEFB114, DEFB110), and EMT (COL11A1, MMP27), and lower expres-
sion of  genes related to AM signaling (e.g., MARCO, FTH1, HLA.C), neutrophil signaling (e.g., MYD88, 
TREM2), and airway and alveolar epithelial function (e.g., SPRR3, MUC5B, SFTPB). In conjunction, 
cell deconvolution showed an increase in BAL CD4+ and CD8+ lymphocyte fractions and a decrease in 
the AM fraction relative to Subtype 1 (Supplemental Data File 20). Patients with Subtype 4 had unique 
BAL coexpression of  a network of  10,223 genes including top hubs SLC38A6, ETFDH, and TAF2, which 
together showed enrichment for collagen deposition, ankyrin interactions, and EMT (Supplemental Data 
File 21). In peripheral blood, patients with Subtype 4 differentially expressed only 156 genes, including 
weak overlap with IFN-α/β pathways (e.g., OAS3, IFIT1) and modest increase in blood CD4+ lympho-
cyte fraction (Supplemental Data File 22). These patients also had greater blood coexpression of  6,908 
genes including top hubs PRR16, SCML2, and TRPC6, which together represented DNA repair, oxidative 
phosphorylation, and aerobic respiration (Supplemental Data File 23). Comparison of  enriched path-
ways in BAL and blood showed no overlapping gene sets. These data illustrate that, in patients with Sub-
type 4, pulmonary microbiome depletion, T cell activation, and epithelial injury response coocur with 
nonspecific systemic signs of  increased metabolic activity, but BAL and blood transcriptomes overall 
showed minimal overlap.

Integrated BAL and blood transcriptome signatures
Given that paired BAL and blood transcriptomes were not correlated, we next questioned whether they 
would complement each other in understanding patient illness and clinical outcomes. By inputting normal-
ized BAL and blood transcriptomes into multi-omics factor analysis (MOFA) followed by dimensionality 
reduction (Uniform Manifold Approximation and Projection [UMAP]), we detected 2 clusters of  patients 
(Figure 6A). Cluster A consisted largely of  patients from the lowest-risk lung injury subtype 1, whereas 
Cluster B consisted largely of  patients from the sicker lung injury Subtypes 2, 3, and 4 (Figure 6B). Patients 

Figure 3. Differential gene expression by survival status. (A) BAL gene expression differences in nonsurvivors. (B) Peripheral blood gene expression differ-
ences in nonsurvivors. (C) Overlap between BAL and blood genes associated with mortality.
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in Cluster B were twice as likely to have required oxygen immediately prior to BAL (50.3% versus 29.1%; 
66 of  131 versus 23 of  79; P = 0.003; Figure 6C) and, when analyzing the most recent encounter for each 
patient, were twice as likely to be dead or require ongoing mechanical ventilation 7 days after BAL (37.0% 
versus 17.2%; 40 of  108 versus 10 of  58, P = 0.008; Figure 6D). Consistent with the biologic themes iden-
tified by other methods above, Cluster B differentially expressed 9,784 genes in BAL (|LFC| ≥ 1, FDR-ad-
justed P < 0.05) representing AM depletion, lymphocyte activation, and epithelial injury, as well as 696 
genes in blood, representing EMT and endothelial activation (Supplemental Data Files 24 and 25). Thus, 
this unified multi-omics approach demonstrates that post-HCT lung injury can be conceptualized as 2 large 
groups, with group B harboring mostly lung injury Subtypes 2, 3, and 4 and showing greater illness severity 
and worse clinical outcomes.

Discussion
In this study, we compared 210 BAL and blood transcriptome pairs from pediatric patients with HCT 
with lung injury. We identified minimal cross-site transcriptome correlation at the level of  individual gene 

Figure 4. Differential gene coexpression by survival status. (A) Network of genes coexpressed in BAL of nonsurvivors (right) but not coexpressed in 
survivors (left). Examples of hubs genes (CEACAM6, CXCL17, NFAM1) are shown. Examples of differentially coexpressed genes linked to each hub gene 
are shown (e.g., CEACAM6-FN1 coexpression) to illustrate differential gene-expression. To the right, pathway enrichment for hub genes are shown. (B) 
Network of genes coexpressed in peripheral blood of nonsurvivors (right) but not coexpressed in survivors (left). Examples of hub genes (ZNF707, GARRE1, 
TMEM86B) are shown. Examples of differentially coexpressed genes linked to each hub gene are shown (e.g., ZNF707-BUB1B coexpression) to illustrate 
differential gene-expression. To the right, pathway enrichment for hub genes are shown.
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expression, gene set enrichment scores, cell type fractions, and T and B cell receptor clonotypes. Instead, 
we uncovered unique site-specific transcriptome networks, suggesting body site compartmentalization of  
injury response. BAL signatures of  mortality reflected immune perturbations, epithelial injury, and hypox-
ia signaling. Instead of  mirroring the pulmonary compartment, peripheral blood transcriptomes showed 
broad signatures of  endothelial injury, DNA repair, neurohormonal activation, and altered cellular metab-
olism, thus expanding our understanding of  the systemic processes involved in post-HCT lung injury.

Other investigators have identified a lack of  BAL-blood correlation for cell fractions and cytokines 
in patients with COVID-19, asthma, and HIV-related lung disease, although transcriptomic compar-
isons are sparse (15–21). Data in patients with HCT are rare, although Omdahl et al. (22) showed in 
a nonhuman primate model of  GVHD that peripheral and lung-specific T cells have notably different 
TCR repertoires and even different site-specific T cell transcriptomes when TCRs are shared. While 
the lung is well known to have a robust local immune repertoire, during lung injury, there is degrada-
tion of  the alveolar-capillary membrane with transmigration of  bone marrow–derived immune cells, 
including neutrophils and monocytes, into the alveolar space (23, 24); thus, we were surprised to see 
the starkly absent cross-site correlation. Since the peripheral blood represents a composite of  circulat-
ing blood cells as well as signals from all tissues in the body, it is possible that the effect of  lung disease 
on the blood signal was diluted by extrapulmonary processes. It is also possible that poor post-HCT 
systemic immune function and/or exogeneous immunosuppression limited systemic immune respons-
es to pulmonary processes. Overall, this strongly suggests that transcriptome measurements obtained 
from peripheral blood cannot be used as a proxy for analogous pulmonary processes, and it challenges 
the current clinical paradigm of  assessing pulmonary inflammation using blood-based biomarkers. 
Whether more durable markers of  pulmonary processes, such as protein biomarkers, can be detected 
in blood to guide pulmonary diagnosis and treatment remains an ongoing question in the field (25–27). 

Figure 5. BAL and peripheral blood transcriptome correlates of post-HCT lung injury subtypes. (A) Concept diagram for 4 
post-HCT lung injury subtypes derived in the PTCTC SUP1601 cohort and validated in the University of Utrecht, Nether-
lands, cohort (58). (B) Example BAL and blood genes differentially expressed in lung injury subtypes 2, 3, and 4 relative to 
subtype 1. (C) Differentially expressed BAL and blood genes underwent pathway analysis, and pathways identified in BAL 
and blood gene are quantified to show greater overall differences detected in BAL as opposed to paired blood.
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However, the prognostic and predictive utility of  such approaches in post-HCT GVHD lend optimism 
to this search (28–30).

While an overlap between BAL and blood pathways of  disease was minimal, we did note a few excep-
tions. A top candidate gene related to post-HCT lung injury in our data was CEACAM6, which was upreg-
ulated in both BAL and blood of  nonsurvivors and also tightly coregulated with BAL expression of  numer-
ous genes related to platelet signaling and endoplasmic reticulum stress. CEACAM6 is expressed on the 
cell surface of  respiratory epithelium, including airway secretory cells and alveolar epithelial cells (31); is 
upregulated after numerous forms of  lung injury; and serves as an intercellular adhesion, antiapoptotic, and 
surfactant protective molecule (32–36). Future studies addressing the biological role and biomarker utility of  
CEACAM6 are warranted.

In addition, we identified a shared BAL-blood transcriptomic signature in lung injury subtype 3, where 
both the BAL and blood showed upregulation of  pathways related to EMT and collagen biosynthesis. 

Table 3. Overview of HCT lung injury subtypes

BAL Peripheral blood
 Key Insights

Lung injury subtype Gene Expression Gene coexpression Gene Expression Gene coexpression
Subtype 1

(Baseline)

AM predominance, 
minimal inflammation

N/A N/A N/A Reference subtype with 
best clinical outcomes

Subtype 2

(Pulmonary 
Neutrophilic 

Inflammation & 
Bacterial Infections)

2,027 DEGs

Increased granulocyte/
inflammasome 

pathways (e.g., CXCR1, 
IL1R2, S100A8)

Decreased macrophage 
/lymphocyte 

signaling(e.g., CCL18, 
APOE, HLA.DRA)

9,181 DCEGs

Top hubs: NLRP3, CXCR1, 
ALPL

Pathways: immune 
activation, cell-cell 

adhesion, platelet activity, 
ECM interactions

1,061 DEGs

Increased thyroid 
activity (e.g., CALCA, 

TPO, DIO2)

Decreased heme 
metabolism (e.g., HBD, 

HBG2)

8,347 DCEGs

Top hubs: NUP210, 
CDH13, COL6A6

Pathways: DNA 
replication, oxidative 

phosphorylation, cellular 
metabolism

Pulmonary bacterial 
infections drive 

neutrophil-dominated 
lung inflammation and 
coocur with systemic 

signs of blood cell 
metabolic activity

Subtype 3

(Severe Microbiome 
Depletion & Epithelial 

Mesenchymal 
Transition)

8,166 DEGs

Increased T cell and 
fibroblast activation, 

myogenesis, nitric oxide 
signaling (e.g., FGF3, 

BMP1, NOS)

Decreased macrophage & 
hypoxia signaling (e.g., 

CD74, FTL, HLA.DRA, 
HIF1A, HMOX1)

6,724 DCEGs

Top hubs: SIGLEC1, 
PTPRC, HADHB

Pathways: collagen 
deposition, integrin 
interactions, EMT

574 DEGs

Increased collagen 
deposition and EMT (e.g., 
COL4A1, LAMA5, TIMP3)

9,269 DCEGs

Top hubs: ANO6, GPD2, 
TLR8

Pathways: DNA repair, 
T cell signaling, heme 

metabolism

Severe microbiome 
depletion and T cell 
activation in lungs 

cooccur with systemic 
epithelial-mesenchymal 

signaling

Subtype 4

(Viral Infections, 
Immune Dysregulation, 

and Epithelial 
Mesenchymal 

Transition)

6,252 DEGs

Increased NK/T cell 
activity β-defensins, 
EMT (e.g., IL2, KLRF1, 

IFNG, DEFB114, COL11A1, 
MMP27)

Decreased AM, 
neutrophil signaling, 

airway epithelial 
function (e.g., MARCO, 
FTH1, MYD88, TREM2, 

SPRR3, MUC5B, SFTPB)

10,223 DCEGs Top hubs: 
SLC38A6, ETFDH, TAF2 

Pathways: collagen 
deposition, ankyrin 
interactions, EMT

156 DEGsWeak increased 
in IFN-α/β expression 

(e.g., OAS3, IFIT1)

6,908 DCEGs Top 
hubs: PRR16, SCML2, 

TRPC. Pathways: 
DNA repair, oxidative 
phosphorylation, and 

aerobic respiration

Severe dysbiosis & viral 
infections in the lungs 

drive strong pulmonary-
specific immune 

activation and EMT 
with a broad systemic 
metabolic signature

Summary of transcriptome findings in post-HCT lung injury subtypes. AM, alveolar macrophage; DEG, differentially expressed gene; ECM, extracellular 
matrix; EMT, epithelial mesenchymal transition.
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Post-HCT fibrosis is a feature of  sclerotic GVHD as well as post-HCT bronchiolitis obliterans syndrome 
and is notoriously difficult to diagnose in the lungs due to the insidious onset and late imaging findings 
(37–39). Thus our findings could suggest a pathway where detection in peripheral blood might provide 
insight into pulmonary processes, which could be leveraged for improved diagnostics. Given the lack of  
tissue for histologic examination, it remains unclear if  these patients truly had pulmonary fibrosis, but this 
can be explored in the future. In addition, it remains unclear whether the detection of  this signal in blood 
represents a synergized systemic response or is simply “leakage” of  the pulmonary signal into the blood 
compartment. Future work is needed to define and characterize the possibility of  pulmonary and extrapul-
monary fibrosis in this population.

Given these findings, it is likely that the field of  post-HCT lung injury will need not only pulmo-
nary-targeted diagnostics, but pulmonary-targeted therapeutics as well. Especially given the serious off-tar-
get effects of  many immunomodulatory medicines, inhaled therapies possibly coupled with nanoparticles 
for durable delivery hold high promise for local effect with the least off-target toxicity (40–42). However, 
it remains unclear whether targeting the identified blood-specific pathways associated with disease could 
actually improve pulmonary outcomes. In support of  this possibility, it has recently been shown that target-
ing intestinal health can improve respiratory health, perhaps through the gut-lung axis (43, 44).

In summary, by comparing 210 paired BAL-blood transcriptomes obtained after pediatric HCT, we 
identified surprisingly little cross-site correlation in gene expression. Instead, we identified unique site-spe-
cific signatures of  disease, suggesting compartmentalization of  injury-response. These findings strongly 
support the need for pulmonary-based diagnostics and therapeutics and also question the exclusive use of  
peripheral blood testing to guide clinical care in patients with lung injury post-HCT.

Methods
Sex as a biological variable. Our study included male and female human participants. Since BAL and blood 
samples were paired, each patient served as their own control. Similar findings are reported for both sexes.

Patients. As previously described (7), participating pediatric centers screened all patients with HCT pre-
paring to undergo clinically indicated bronchoscopic BAL for diagnostic assessment of  pulmonary disease 
(NCT02926612).

Biospecimen collection. Bronchoscopy and BAL were performed at the discretion of  the treating team using 
local institutional protocols. All BAL samples were obtained by pediatric pulmonologists trained in fiberop-
tic bronchoscopy with anesthesia provided by anesthesiologists or critical care physicians. Lavage protocol 
was not dictated by the study but typically involved 3–6 aliquots of  10 mL sterile saline inserted into diseased 
areas of  the lung as determined by preceding chest imaging or physical exam. Percent of  lavage returned was 

Figure 6. Integrated BAL and blood transcriptomic signatures reveal 2 large patient groups. (A) Paired BAL and blood transcriptomes underwent 
multi-omics factor analysis (MOFA) followed by dimensionality reduction (UMAP) and k-means clustering to show 2 groups of patients. (B) Post-HCT lung 
injury subtype was mapped onto the 2 integrated transcriptome clusters, showing that most patients from subtypes 2, 3, and 4 mapped to Cluster B. (C 
and D) Approximately twice as many patients in Cluster B required oxygen prior to BAL sampling, and twice as many patients died or required ongoing 
mechanical ventilation within 7 days of BAL sampling.
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not routinely documented, and lavage aliquots were typically pooled by the clinical team immediately after 
collection. After aliquoting for clinical testing, excess lavage remained unfractionated and was placed imme-
diately on dry ice, stored at –70ºC until processing. Blood was collected during the BAL procedure, typically 
within 30 minutes of  the lavage; 2.5mL whole blood was collected directly into a PAXgene tube, which was 
inverted 5–10 times and stored per the manufacturer’s instructions at –70°C until processing.

Clinical protocols and data collection. Clinical microbiologic testing was determined by the treating team 
and typically included culture for bacteria, fungus, and acid-fast bacteria; multiplex PCR for respiratory 
viruses; galactomannan antigen; and cytology for Pneumocystis jirovecii. Additional molecular diagnostics 
such as PCR for atypical bacteria or fungi were used at the discretion of  the site. After BAL, supportive 
care protocols were determined by the treating team. Patient demographics, medical history, and trans-
plant-specific data were documented by trained study coordinators at each site. The most recent ANC and 
ALC measured clinically prior to BAL were documented. Results of  clinical microbiologic testing on BAL 
were documented and not considered complete until 4 weeks after collection. Patients were followed until 
hospital discharge with no loss to follow-up.

RNA extraction. BAL underwent RNA extraction as previously described (7). Briefly, 200 μL of  BAL 
was combined with 200 μL DNA/RNA Shield (Zymo) and 0.5 mm glass bashing beads (Omni) for 5 cycles 
of  25 seconds bashing at 30 Hz, with 60 seconds of  rest on ice between each cycle (TissueLyser II, Qiagen). 
Subsequently, samples were centrifuged at 16,000g for 10 minutes at 4°C, and the supernatant was used for 
column-based RNA extraction with DNase treatment according to the manufacturer’s recommendations 
(Zymo ZR-Duet DNA/RNA MicroPrep Kit). RNA extraction of  PAXgene tubes was performed for this 
study. Briefly, 1.7 mL of  peripheral blood mixed with PAXgene reagent underwent 10 minutes of  centrifu-
gation at 1,200g, was washed with PBS, recentrifuged for 10 minutes, and the pellet was combined with 100 
μL DNA/RNA Shield, treated with Proteinase K, and underwent a magnetic bead–based extraction with 
DNase treatment according to the manufacturer’s recommendations (Zymo Quick-RNA Magbead Kit).

RNA-Seq. BAL underwent RNA-Seq as previously described using the New England Biolabs Ultra II 
RNA Library Prep Kit (7). Both BAL and peripheral blood RNA underwent sequencing library prepara-
tion using miniaturized protocols adapted from the New England Biolabs Ultra II RNA Library Prep Kit 
(45). Reagents were dispensed using the Echo 525 (Labcyte) and underwent Ampure-XP bead cleaning 
on a Beckman Coulter Biomek NXP instrument. The peripheral blood libraries received treatment with 
rRNA and globin-depleting FastSelect reagent. Libraries underwent 19 cycles of  PCR amplification and 
size selection to a target 300–700 nucleotides (nt), and they were pooled to facilitate approximately 
even depth of  sequencing. Twenty-five picograms (pg) of  External RNA Controls Consortium (ERCC) 
pooled standards were spiked in to each sample after RNA extraction and before library preparation to 
serve as internal positive controls (Thermo Fisher Scientific, 4456740). In addition, to identify contam-
ination in laboratory reagents and the laboratory environment, each batch contained 2 samples of  200 
μL sterile water and 6–8 samples of  200 μL HeLa cells taken from a laboratory stock and processed 
identically to patient samples, in order to account for laboratory- and reagent-introduced contamination. 
These samples were processed at the same time as the patient BAL samples in order to use the same 
lot of  reagents and minimize batch effect on control samples. Samples were first sequenced at shallow 
depth on an Illumina iSeq instrument; n = 4 samples were removed due to low sequencing quality, and 
the remaining samples were pooled across lanes of  an Illumina NovaSeq 6000 or NovaSeq X instrument 
and sequenced to a target depth of  40 million read-pairs with sequencing read length of  125 nt. Resultant 
fastq files underwent alignment to hg38 (STAR), with mitochondrial, ribosomal, and non-protein-coding 
transcripts excluded, leading to detection of  a median 18,341 protein-coding transcripts per BAL (IQR, 
17,052–18,755) and a median 14,146 transcripts per blood sample (IQR, 13,339–14,560). The dataset 
was then further subset for samples with > 50,000 total reads to protein-coding genes and genes present 
in > 25% of  samples (9 blood samples were removed).

Statistics. Genes differentially expressed by body site were identified by fitting negative binomial gener-
alized linear models to body site with patient grouping as a random effect (edgeR) (46). Genes differentially 
coexpressed by body site were analyzed at the pathway level by first creating gene set enrichment scores to 
the MSigDB Hallmark pathways (gsva) (47), calculating gene set–gene set correlation within each site, and 
then contrasting the correlations across BAL and blood (DGCA) (48). Gene expression correlation across 
body sites was assessed by subjecting gene counts to variance stabilizing transformation (DESeq2, vst) (49) 
and then calculating genewise Spearman correlations using paired values. This analysis was repeated using 



1 4

C L I N I C A L  R E S E A R C H  A N D  P U B L I C  H E A L T H

JCI Insight 2025;10(17):e194440  https://doi.org/10.1172/jci.insight.194440

gene set enrichment scores (gsva). We then used CIBERSORTx (50) to impute cell type fractions in BAL 
using the Travaglini et al. lung cell atlas (51) and in blood using the Schulte-Schrepping et al. blood cell 
atlas (52). We then tested for correlation between BAL and blood cell fractions using Spearman correla-
tions. ImReP was used to identify T and B cell receptor repertoires (53). All analyses involving ≥10 compar-
isons were subjected to FDR adjustment to address multiple-hypothesis testing, and statistical significance 
was assessed at the level of  FDR-adjusted P < 0.05.

Contrasts were then repeated by survival status (using each patient’s most recent encounter) and by 
lung injury subtype. Here, site-specific gene-to-gene correlation networks were created by identifying genes 
correlated in 1 body site (Spearman rho ≥ 0.5) and not correlated in the other body site (Spearman rho 
< 0.1) with a significant contrast of  FDR-adjusted P < 0.05 (DGCA). Gene networks were plotted using 
Cytoscape v3.10.3 (54). Genes involved in each gene network were then ranked by Hub Score (igraph) (55) 
to identify most central genes, and were summarized at the pathway level using gene set enrichment (Cluster-
Profiler) (56). We integrated BAL and blood transcriptomes by applying variance-stabilizing transformation 
(vst, DESeq2) (49) to BAL and blood transcriptomes followed by MOFA (57), dimensionality reduction 
(UMAP), and k-means clustering (cluster). Data were visualized using volcano plots (EnhancedVolcano), 
box-and-whisker violin plots (ggplot), heatmaps (pheatmap), and gene set enrichment plots (ClusterProfiler).

Study approval. Patients or their guardians were approached prospectively for consent under local IRB 
approval at each site (UCSF IRB nos. 14-13546 and 16-18908) in accordance with the Declaration of  Hel-
sinki, and permission was obtained to collect leftover BAL fluid as well as paired blood.

Data availability. Raw sequencing files and instructions to request download are available under con-
trolled access on NIH dbGaP (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_
id=phs001684.v3.p1). Individual-level data are available indefinitely. Code and processed anonymized 
individual-level data files are available on GitHub (https://github.com/zinterm/pedBMT_BALseq; com-
mit ID 4beb6dd). Values for all data points in graphs are reported in the Supporting Data Values file.
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